Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ...Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.展开更多
A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic ...A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic brown soil during 2001 and 2002. A completely randomexperimental design with three replications was employed, having four soil management practices astreatments, namely: an undisturbed plow layer (CK), a thin plastic film (TN), a thick plastic film(TI) and subsoil compacting (CP). Results indicated no significant differences among all treatmentsfor rice biomass and grain yields. Also, water consumption was about the same for treatments TN andCK, however the treatments TI and CP were much lower with more than 45% and 40% of the irrigationwater in the treatments TI and CP, respectively, saved each year compared to CK. Therefore, wateruse efficiency was higher in the treatments TI and CP. These results will provide a scientific basisfor the water-saving rice cultivation.展开更多
基金Project(52225403)supported by the National Natural Science Foundation of ChinaProject(2023YFF0615401)supported by the National Key Research and Development Program of China+1 种基金Projects(2023NSFSC0004,2023NSFSC0790)supported by Science and Technology Program of Sichuan Province,ChinaProject(2021-CMCUKFZD001)supported by the Open Fund of State Key Laboratory of Coal Mining and Clean Utilization,China。
文摘Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.
基金Project supported by the Foundation of Shenyang Experimental Station of Ecology, Chinese Academy of Sciences (No. SYZ0203).
文摘A field experiment was conducted at the Shenyang Experimental Station ofEcology, Chinese Academy of Sciences, to study the effects of soil management practices on water useand rice (Oryza sativa L.) yield in an aquic brown soil during 2001 and 2002. A completely randomexperimental design with three replications was employed, having four soil management practices astreatments, namely: an undisturbed plow layer (CK), a thin plastic film (TN), a thick plastic film(TI) and subsoil compacting (CP). Results indicated no significant differences among all treatmentsfor rice biomass and grain yields. Also, water consumption was about the same for treatments TN andCK, however the treatments TI and CP were much lower with more than 45% and 40% of the irrigationwater in the treatments TI and CP, respectively, saved each year compared to CK. Therefore, wateruse efficiency was higher in the treatments TI and CP. These results will provide a scientific basisfor the water-saving rice cultivation.