The viscosities of pure water,the acetic acid+water binary system,and the p-xylene+acetic acid+ water ternary system at different concentrations were determined with a rolling-ball viscometer at temperatures from 313....The viscosities of pure water,the acetic acid+water binary system,and the p-xylene+acetic acid+ water ternary system at different concentrations were determined with a rolling-ball viscometer at temperatures from 313.15 to 473.15 K and pressures from 0.10 to 3.20 MPa.The viscosity data were fitted by a correlation equation for the estimation of the mixture viscosities.The average absolute deviations(AAD)of the correlation for binary and ternary systems are 2.48%and 1.77%,respectively.展开更多
In this study,the temporal and spatial variations of observed global oceanic precipitation during 1979-2010 are investigated.It is found that the global trend in precipitation during this period varies at a rate of 1....In this study,the temporal and spatial variations of observed global oceanic precipitation during 1979-2010 are investigated.It is found that the global trend in precipitation during this period varies at a rate of 1.5%/K of surface warming while the rate is 6.6%/K during 2006-2010.The precipitation is highly correlated with Sea Surface Temperature (SST) in both the temporal and the spatial patterns since the strong 1997-98 E1 Ni(n)o event.Considering the distributions of precipitation and SST,seven oceanic regions are classified and presented using the observed Global Precipitation Climatology Project (GPCP) data and Extended Reconstructed Sea Surface Temperatures,version 3 (ERSST.v3) data.Further examining the mechanisms of the classified oceanic precipitation regions is conducted using the Tropical Rainfall Measuring Mission (TRMM) satellite,GFDL-ESM-2G model precipitation and SST data and Hadley Center sea ice and SST version 1 (HadISST1) data.More than 85% of global oceanic precipitations are controlled by either one or both of the warmer-get-wetter mechanism and wet-get-wetter mechanism.It is estimated that a 0.5 SST signal-to-noise ratio,representing the trend of SST time series to the standard deviation,is a criterion to distinguish the mechanism of a region.When the SST ratio is larger than 0.5,the precipitation of this region is controlled by the warmer-get-wetter mechanism.SST,rather than the humidity,is the pivotal factor.On the other hand,when the SST ratio is less than 0.5,the precipitation is controlled by the wet-get-wetter mechanism.The SST variability is a significant factor contributing to the precipitation variation.展开更多
基金Supported by China Petrochemical Corporation(X505012)
文摘The viscosities of pure water,the acetic acid+water binary system,and the p-xylene+acetic acid+ water ternary system at different concentrations were determined with a rolling-ball viscometer at temperatures from 313.15 to 473.15 K and pressures from 0.10 to 3.20 MPa.The viscosity data were fitted by a correlation equation for the estimation of the mixture viscosities.The average absolute deviations(AAD)of the correlation for binary and ternary systems are 2.48%and 1.77%,respectively.
基金supported by the National Basic Research Program of China (2012CB955603)the Natural Science Foundation of China (41076115)Basic Scientific Research Operating Expenses of Ocean University of China
文摘In this study,the temporal and spatial variations of observed global oceanic precipitation during 1979-2010 are investigated.It is found that the global trend in precipitation during this period varies at a rate of 1.5%/K of surface warming while the rate is 6.6%/K during 2006-2010.The precipitation is highly correlated with Sea Surface Temperature (SST) in both the temporal and the spatial patterns since the strong 1997-98 E1 Ni(n)o event.Considering the distributions of precipitation and SST,seven oceanic regions are classified and presented using the observed Global Precipitation Climatology Project (GPCP) data and Extended Reconstructed Sea Surface Temperatures,version 3 (ERSST.v3) data.Further examining the mechanisms of the classified oceanic precipitation regions is conducted using the Tropical Rainfall Measuring Mission (TRMM) satellite,GFDL-ESM-2G model precipitation and SST data and Hadley Center sea ice and SST version 1 (HadISST1) data.More than 85% of global oceanic precipitations are controlled by either one or both of the warmer-get-wetter mechanism and wet-get-wetter mechanism.It is estimated that a 0.5 SST signal-to-noise ratio,representing the trend of SST time series to the standard deviation,is a criterion to distinguish the mechanism of a region.When the SST ratio is larger than 0.5,the precipitation of this region is controlled by the warmer-get-wetter mechanism.SST,rather than the humidity,is the pivotal factor.On the other hand,when the SST ratio is less than 0.5,the precipitation is controlled by the wet-get-wetter mechanism.The SST variability is a significant factor contributing to the precipitation variation.