Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this...Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.展开更多
The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous...The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.展开更多
Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal va...Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.展开更多
According to the relationships among state transition probability matrixes with different step lengths, an improved Markov chain model based on autocorrelation and entropy techniques was introduced. In the improved Ma...According to the relationships among state transition probability matrixes with different step lengths, an improved Markov chain model based on autocorrelation and entropy techniques was introduced. In the improved Markov chain model, the state transition probability matrixes can be adjusted. The steps of the historical state of the event, which was significantly related to the future state of the event, were determined by the autocorrelation technique, and the impact weights of the event historical state on the event future state were determined by the entropy technique. The presented model was applied to predicting annual precipitation and annual runoff states, showing that the improved model is of higher precision than those existing Markov chain models, and the determination of the state transition probability matrixes and the weights is more reasonable. The physical concepts of the improved model are distinct, and its computation process is simple and direct, thus, the presented model is sufficiently general to be applicable to the prediction problems in hydrology and water resources.展开更多
The arid areas in China are mainly located in North China and NorthwestChina. The North China is the main region for food production. There is 31. 19% of the totalfarmland and 26. 01% of the total population, but only...The arid areas in China are mainly located in North China and NorthwestChina. The North China is the main region for food production. There is 31. 19% of the totalfarmland and 26. 01% of the total population, but only 6. 14% of the available water resources ofChina. Groundwater is over pumped (6. 53 X 10~9m^3 every year) in the regions of Beijing, Tianjin,and Hebei Province, so water supply could not meet the water demand there. The distribution of waterin Northwest China is uneven, some inland rivers and lakes are dried up, and desertification hasexpanded since river water in the upper and middle reaches is diverted for irrigation. Up to 2050,population will be up to 1. 6 X 10~9 in China, and industry will be developed fast, therefore 50% ofthe water supply will be used by industry and resident, and water for agriculture will be decreasedyear by year. In the coming 50 years, water demand for agriculture will be increased by 5. 6 x10^9m^3 in the Huanghe (Yellow) River valley, and by 1. 7 x 10~9m^3 in the Northwest China. It willbe impossible for the Huanghe River to meet the water demand, because it always dried up in the coldhalf year since 1984. To avoid water shortage of agriculture in the arid regions, it is necessaryto divert water from the Changjiang (Yangtze) River in the south of China, and to use waterefficiently. It is the best way to use drip irrigation in agriculture, recycle water in industry andresident use, and control water pollution. Otherwise water shortage in the arid regions willrestrict the development of agriculture in China.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
Environmental concerns associated with nutrient-oriented eutrophication phenomenon have become a serious issue and a major cause of water quality deficiency nowadays. This necessitated eutrophication to occupy a front...Environmental concerns associated with nutrient-oriented eutrophication phenomenon have become a serious issue and a major cause of water quality deficiency nowadays. This necessitated eutrophication to occupy a front seat in research accompanied with climate change. Climate change has revealed to be a key player and a main contributor in the occurrence of such phenomenon. This paper discusses the ever-growing concern about eutrophication as a cause of climate change. Climate change affects storms intensity, changing the precipitation regime and increasing temperature. These effects increase the nutrient loading diffusion and cause excessive nutrients accompanied with storm water runoff, domestic wastewaters, and agricultural discharges to pour into water bodies. Eutrophication conversely contributes in the global wanning by releasing greenhouse gases from deoxygenated waters and sediments. Some control and mitigation measures are needed to fight climate change and achieve desired water quality goals. These measures include mitigation of climate change causes, enhancement of natural ecohydrological processes, application of proper integrated water resource management and participation of communities and governments.展开更多
This article offers a brief description of the water resources situation of the Kingdom of Thailand, a country with a population of over 65 million people and a surface area of 513,120 km^2. The average annual rainfal...This article offers a brief description of the water resources situation of the Kingdom of Thailand, a country with a population of over 65 million people and a surface area of 513,120 km^2. The average annual rainfall is 1,430 mm and the total water resources are estimated at 215,000 Mm^3 (million of m^3)-year^-1. The hydric demand in the country is 70,000 Mm^3.year^-1, 6% of which is groundwater in origin. Over 70% of the water is used for agriculture. Thailand is the world's leading exporter of rice. The main problems faced by the Water Authority in Thailand are pollution, floods and droughts, depending on the geographical zone. From the hydrogeological point of view, the Central Plain is the main groundwater reservoir in the nation. Intensive extraction of groundwater over a long period of time has caused three main problems: a decline in groundwater levels, land subsidence, and seawater intrusion. These problems have been especially pressing in the area known as Greater Bangkok.展开更多
In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Prec...In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.展开更多
The present work is aimed at assessing the water quality index (WQI) for the groundwater for Gulbarga city. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water qu...The present work is aimed at assessing the water quality index (WQI) for the groundwater for Gulbarga city. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. One can then compare different samples for quality on the basis of the index value of each sample. The present work relates to the development of water quality index for the study area based on the experimental results of physicochemical analysis of water samples. For calculating the WQI, the following 11 parameters have been considered, pH, TH, Ca, Mg, NO3, SO4, TDS, F, CI, K and Na. The WQI for these samples ranges from 10.40 to 155. Using developed indices, groundwater isopleth map has been prepared for study area. In the case study, the WQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture that is easily interpretable for regional decision makers for better planning and management. The results of analysis have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination.展开更多
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter...In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.展开更多
Florida's artesian springs receive groundwater outflows from the Floridan Aquifer System and are concentrated north of I-4 and west to the Florida Panhandle. These springs and their resulting spring runs support a un...Florida's artesian springs receive groundwater outflows from the Floridan Aquifer System and are concentrated north of I-4 and west to the Florida Panhandle. These springs and their resulting spring runs support a unique freshwater ecology dependent on perennial flows, constant temperature and chemistry, and high light transmissivity. Numerous observations indicate that Florida's springs flows are declining as a result of the increasing extraction of groundwater for human uses. North Florida's karst environment is especially susceptible to nitrogen pollution from agricultural and urban development. An empirical springs/aquifer water budget is needed to better understand these spring stressors. Discharge data from 393 of the state's 1,000+ artesian springs are used to estimate trends in total spring discharge by decade since 1930-39. This analysis indicates that average spring flows have declined by about 32%. Large groundwater pumping centers are altering spring flows over the whole springs region. Existing groundwater pumping rates from the Floridan Aquifer in 2010 were more than 30% of average annual aquifer recharge, and allocated groundwater use in north-central Florida is nearly double current estimated uses. Based on biological research conducted in Florida springs, these flow reductions are from two to six times greater than declines known to result in significant harm to aquatic resources.展开更多
For sustainable water resource management,it is important to determine the relationship between streamfl ow and other variables that infl uence availability of water resources.However,many catchments do not have suffi...For sustainable water resource management,it is important to determine the relationship between streamfl ow and other variables that infl uence availability of water resources.However,many catchments do not have suffi cient data to allow for a more detailed study of these relationships.We faced a similar challenge in the Chengcun Basin(limited historical data: from 1986–1999); and therefore we used a new approach to overcome this.We found that,using nonparametric trend methods in conjunction with the climate elasticity analyses and the 2D visualization of hydrologic data,it is possible to assess the relationships between streamfl ow and other hydro-climatic variables.In the past,streamfl ow trends in the basin were more correlated with precipitation than with potential evapotranspiration(PET).In addition,there is a gradual shift in the hydrological regime of the catchment,which may affect the occurrence of available water resources and activities that depend on them.In addition,based on our climate sensitivity analyses,the streamfl ow is dependent and more sensitive to variations in precipitation than to PET(δQ=0.79δP+0.42δE; precipitation elasticity,ε P=1.32; PET elasticity,ε E=-2.10).Therefore pending more detailed studies,the use of our approach will provide a rapid means to assess the variation of water resources(streamfl ow)in a watershed.In the future,we hope to carry out related research in other watersheds and also perform a more detailed studies to improve upon the results of this study.展开更多
文摘Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.
文摘The Anjialing No. 1 Coal Mine in Shanxi Province, China, contains a complicated old goaf and an unknown water distribution that hold high potential for serious water hazards. Due to poor detection resolution, previous attempts have failed to determine the scope of the old goal and the water distribution in the mine by separate use of various exploration methods such as seismic method, direct current resistivity, audio magnetotellurics, controlled-source audio-frequency magnetotellurics, and transient electromag-netics. To solve this difficult problem, a combination of the wide-field electromagnetic method and the flow field fitting method with three-dimensional resistivity data inversion was applied to determine the precise scope of the goal and the locations where water is present, and to identify the hydraulic con- nection between the water layers so as to provide reliable technical support for safe coal production. Reasonable results were achieved, with all these goals being met. As a result, a mining area of nearly 4 km^2 has been released for operation.
基金Under the auspices of Nation Basic Research Program of China(No.2007CB411502)German Science Foundation(Research Unit 536)Independent Research Project from State Key Laboratory of Cryospheric Science(No.SKLCS-ZZ-2010-02)
文摘Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.
基金Under the auspices of Major Special Technological Program of Water Pollution Control and Management (No.2009ZX07106-001)National Natural Science Foundation of China (No. 51079037, 50909063)
文摘According to the relationships among state transition probability matrixes with different step lengths, an improved Markov chain model based on autocorrelation and entropy techniques was introduced. In the improved Markov chain model, the state transition probability matrixes can be adjusted. The steps of the historical state of the event, which was significantly related to the future state of the event, were determined by the autocorrelation technique, and the impact weights of the event historical state on the event future state were determined by the entropy technique. The presented model was applied to predicting annual precipitation and annual runoff states, showing that the improved model is of higher precision than those existing Markov chain models, and the determination of the state transition probability matrixes and the weights is more reasonable. The physical concepts of the improved model are distinct, and its computation process is simple and direct, thus, the presented model is sufficiently general to be applicable to the prediction problems in hydrology and water resources.
文摘The arid areas in China are mainly located in North China and NorthwestChina. The North China is the main region for food production. There is 31. 19% of the totalfarmland and 26. 01% of the total population, but only 6. 14% of the available water resources ofChina. Groundwater is over pumped (6. 53 X 10~9m^3 every year) in the regions of Beijing, Tianjin,and Hebei Province, so water supply could not meet the water demand there. The distribution of waterin Northwest China is uneven, some inland rivers and lakes are dried up, and desertification hasexpanded since river water in the upper and middle reaches is diverted for irrigation. Up to 2050,population will be up to 1. 6 X 10~9 in China, and industry will be developed fast, therefore 50% ofthe water supply will be used by industry and resident, and water for agriculture will be decreasedyear by year. In the coming 50 years, water demand for agriculture will be increased by 5. 6 x10^9m^3 in the Huanghe (Yellow) River valley, and by 1. 7 x 10~9m^3 in the Northwest China. It willbe impossible for the Huanghe River to meet the water demand, because it always dried up in the coldhalf year since 1984. To avoid water shortage of agriculture in the arid regions, it is necessaryto divert water from the Changjiang (Yangtze) River in the south of China, and to use waterefficiently. It is the best way to use drip irrigation in agriculture, recycle water in industry andresident use, and control water pollution. Otherwise water shortage in the arid regions willrestrict the development of agriculture in China.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
文摘Environmental concerns associated with nutrient-oriented eutrophication phenomenon have become a serious issue and a major cause of water quality deficiency nowadays. This necessitated eutrophication to occupy a front seat in research accompanied with climate change. Climate change has revealed to be a key player and a main contributor in the occurrence of such phenomenon. This paper discusses the ever-growing concern about eutrophication as a cause of climate change. Climate change affects storms intensity, changing the precipitation regime and increasing temperature. These effects increase the nutrient loading diffusion and cause excessive nutrients accompanied with storm water runoff, domestic wastewaters, and agricultural discharges to pour into water bodies. Eutrophication conversely contributes in the global wanning by releasing greenhouse gases from deoxygenated waters and sediments. Some control and mitigation measures are needed to fight climate change and achieve desired water quality goals. These measures include mitigation of climate change causes, enhancement of natural ecohydrological processes, application of proper integrated water resource management and participation of communities and governments.
文摘This article offers a brief description of the water resources situation of the Kingdom of Thailand, a country with a population of over 65 million people and a surface area of 513,120 km^2. The average annual rainfall is 1,430 mm and the total water resources are estimated at 215,000 Mm^3 (million of m^3)-year^-1. The hydric demand in the country is 70,000 Mm^3.year^-1, 6% of which is groundwater in origin. Over 70% of the water is used for agriculture. Thailand is the world's leading exporter of rice. The main problems faced by the Water Authority in Thailand are pollution, floods and droughts, depending on the geographical zone. From the hydrogeological point of view, the Central Plain is the main groundwater reservoir in the nation. Intensive extraction of groundwater over a long period of time has caused three main problems: a decline in groundwater levels, land subsidence, and seawater intrusion. These problems have been especially pressing in the area known as Greater Bangkok.
基金National Natural Science Foundation of China,No.40830636 No.40671034Foundation of Isotopes in Precipitation of Chinese Ecosystem Research Network
文摘In order to reveal the characteristics and climatic controls on the stable isotopic composition of precipitation over Arid Northwestern China, eight stations have been selected from Chinese Network of Isotopes in Precipitation(CHNIP).During the year 2005 and 2006, monthly precipitation samples have been collected and analyzed for the composition of δD and δ18O.The established local meteoric water line δD=7.42δ18O+1.38, based on the 95 obtained monthly composite samples, could be treated as isotopic input function across the region.The deviations of slope and intercept from the Global Meteoric Water Line indicated the specific regional meteorological conditions.The monthly δ18O values were characterized by a positive correlation with surface air temperature(δ18O(‰) =0.33 T(℃)-13.12).The amount effect visualized during summer period(δ18O(‰) =-0.04P(mm)-3.44) though not appeared at a whole yearly-scale.Spatial distributions of δ18O have properly portrayed the atmospheric circulation background in each month over Arid Northwestern China.The quan-titative simulation of δ18O, which involved a Rayleigh fractionation and a kinetic fractionation, demonstrated that the latter one was the dominating function of condensation of raindrops.Furthermore, the raindrop suffered a re-evaporation during falling processes, and the precipitation vapor might have been mixed with a quantity of local recycled water vapor.Multiple linear regression equations and a δ18O-T relation have been gained by using meteorological parameters and δ18O data to evaluate physical controls on the long-term data.The established δ18O-T relation, which has been based on the present-day precipitation, could be considered as a first step of quantitatively reconstructing the historical environmental climate.
文摘The present work is aimed at assessing the water quality index (WQI) for the groundwater for Gulbarga city. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. One can then compare different samples for quality on the basis of the index value of each sample. The present work relates to the development of water quality index for the study area based on the experimental results of physicochemical analysis of water samples. For calculating the WQI, the following 11 parameters have been considered, pH, TH, Ca, Mg, NO3, SO4, TDS, F, CI, K and Na. The WQI for these samples ranges from 10.40 to 155. Using developed indices, groundwater isopleth map has been prepared for study area. In the case study, the WQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture that is easily interpretable for regional decision makers for better planning and management. The results of analysis have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination.
基金Supported by Tianjin Construction Committee Technology Project (No2007-37)
文摘In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
文摘Florida's artesian springs receive groundwater outflows from the Floridan Aquifer System and are concentrated north of I-4 and west to the Florida Panhandle. These springs and their resulting spring runs support a unique freshwater ecology dependent on perennial flows, constant temperature and chemistry, and high light transmissivity. Numerous observations indicate that Florida's springs flows are declining as a result of the increasing extraction of groundwater for human uses. North Florida's karst environment is especially susceptible to nitrogen pollution from agricultural and urban development. An empirical springs/aquifer water budget is needed to better understand these spring stressors. Discharge data from 393 of the state's 1,000+ artesian springs are used to estimate trends in total spring discharge by decade since 1930-39. This analysis indicates that average spring flows have declined by about 32%. Large groundwater pumping centers are altering spring flows over the whole springs region. Existing groundwater pumping rates from the Floridan Aquifer in 2010 were more than 30% of average annual aquifer recharge, and allocated groundwater use in north-central Florida is nearly double current estimated uses. Based on biological research conducted in Florida springs, these flow reductions are from two to six times greater than declines known to result in significant harm to aquatic resources.
基金Supported by the Hohai University Scholarship Schemethe National Natural Science Foundation of China(Nos.41130639,51179045,41101017,412010208)the Innovation Program for Graduates in Jiangsu Province,China(No.CXZZ13_02)
文摘For sustainable water resource management,it is important to determine the relationship between streamfl ow and other variables that infl uence availability of water resources.However,many catchments do not have suffi cient data to allow for a more detailed study of these relationships.We faced a similar challenge in the Chengcun Basin(limited historical data: from 1986–1999); and therefore we used a new approach to overcome this.We found that,using nonparametric trend methods in conjunction with the climate elasticity analyses and the 2D visualization of hydrologic data,it is possible to assess the relationships between streamfl ow and other hydro-climatic variables.In the past,streamfl ow trends in the basin were more correlated with precipitation than with potential evapotranspiration(PET).In addition,there is a gradual shift in the hydrological regime of the catchment,which may affect the occurrence of available water resources and activities that depend on them.In addition,based on our climate sensitivity analyses,the streamfl ow is dependent and more sensitive to variations in precipitation than to PET(δQ=0.79δP+0.42δE; precipitation elasticity,ε P=1.32; PET elasticity,ε E=-2.10).Therefore pending more detailed studies,the use of our approach will provide a rapid means to assess the variation of water resources(streamfl ow)in a watershed.In the future,we hope to carry out related research in other watersheds and also perform a more detailed studies to improve upon the results of this study.