BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinn...BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.展开更多
Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methy...Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue and direct blue 2C azodyes. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that TiO2 nanopowders have the particles size of 5-120 nm with the specific surface area of 15-120 m2·g^-1. The used TiO2 samples are characterized by mesoporous structures with average pore size of 4.3-14.9 nm. The photocatalytic activity of TiO2 was evaluated via decolorization of azodyes solutions. It was shown that the efficiency of decolorization symbatically changes with the dye adsorption value on TiO2 surface and the degree of decolorization rises when the surface area of TiO2 nanopowders increases. It was found that TiO2 photocatalytic activity essentially depends on adsorption interactions between the dye molecules and catalytic active centers on TiO2 surface, and these interactions, in turn, are greatly affected by pH of the solution.展开更多
基金Supported by National Natural Science Foundation of China(No.50506020)Natural Science Foundation of Tianjin(No.043605211)Young Teacher Foundation of Tianjin University(No.5110103)
文摘BaFe12O19 fibers was prepared via an aqueous sol-gel process using Fe(OH)(HCOO)2 synthesized in laboratory and Ba(CH3COO)2 as the original materials and citrate as the chelate. The rheological behaviour of spinnable sol was characterized on rheometer, and the development of gel fibers to barium ferrite fibers was studied by IR, TG and XRD. Morphology observation of the fibers was given on SEM, and the diameter of the obtained fibers was between 5 and 10 um corresponding to different additives. The additives affected the surface tension of the precursor sol which had close relation to the microstructure of fibers. Sucrose and hydroxyethylic cellulose could improve the surface tension while diethanolamine and hexadecylamine reduce that of the decylamine as an additive, well-structured BaFe12O19 precursor sol. And using diethanolamine or hexafibers could be obtained.
文摘Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue and direct blue 2C azodyes. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that TiO2 nanopowders have the particles size of 5-120 nm with the specific surface area of 15-120 m2·g^-1. The used TiO2 samples are characterized by mesoporous structures with average pore size of 4.3-14.9 nm. The photocatalytic activity of TiO2 was evaluated via decolorization of azodyes solutions. It was shown that the efficiency of decolorization symbatically changes with the dye adsorption value on TiO2 surface and the degree of decolorization rises when the surface area of TiO2 nanopowders increases. It was found that TiO2 photocatalytic activity essentially depends on adsorption interactions between the dye molecules and catalytic active centers on TiO2 surface, and these interactions, in turn, are greatly affected by pH of the solution.