Toxic Zn(II) ion imprinted interpenetrating polymer networks were synthesized for the selective sorption of Zn(ll) from aqueous solutions using a biopolymer alginic acid. The polymeric biosorbant was prepared usin...Toxic Zn(II) ion imprinted interpenetrating polymer networks were synthesized for the selective sorption of Zn(ll) from aqueous solutions using a biopolymer alginic acid. The polymeric biosorbant was prepared using Zn(II) ion as template, acrylamide as functional monomer, cross linker NNMBA (N,N' Methylene-bis-acrylamide) and potassium persulphate as an initiator. The non-imprinted polymer networks were also prepared without use of the Zn(II) ion. The synthesized interpenetrating networks were characterized by various spectral techniques. Metal ion binding studies were carried out and the factors affecting binding were also optimized. Competitive sorption studies were investigated to determine the selectivity of Zn(II) ion imprinted interpenetrating polymer network. Zinc ion imprinted polymer networks showed good selectivity for the target ion.展开更多
Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory ...Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory experiments were performed in order to better understand the processes that governed the dynamics of Zn in non-calcareous paddy soils at varying redox potentials(Eh).Airdried non-calcareous soil samples collected from four different paddy field sites in the Philippines were submerged and incubated in a reaction cell with continuous stirring and nitrogen purging for 4 weeks,and then purged with compressed air for another week to reoxidize the system.The Eh of the four soils started at 120 to 300 mV,decreased to —220 to —300 mV after 100 to 250 h of reduction,and was maintained at this low plateau for about 2 weeks before increasing again upon reoxidation.Zinc solubility showed contrasting patterns in the four soils,with two of the soils showing a decrease in soluble Zn as the Eh became low,probably due to zinc sulfide(ZnS) precipitation.In contrast,the other two soils showed that Zn solubility was maintained during the reduced phase which could be due to the competition with iron(Fe) for precipitation with sulfide.Differences in the relative amounts of S,Fe,and manganese(Mn) oxides in the four soils apparently influenced the pattern of Zn solubility after flooding.展开更多
文摘Toxic Zn(II) ion imprinted interpenetrating polymer networks were synthesized for the selective sorption of Zn(ll) from aqueous solutions using a biopolymer alginic acid. The polymeric biosorbant was prepared using Zn(II) ion as template, acrylamide as functional monomer, cross linker NNMBA (N,N' Methylene-bis-acrylamide) and potassium persulphate as an initiator. The non-imprinted polymer networks were also prepared without use of the Zn(II) ion. The synthesized interpenetrating networks were characterized by various spectral techniques. Metal ion binding studies were carried out and the factors affecting binding were also optimized. Competitive sorption studies were investigated to determine the selectivity of Zn(II) ion imprinted interpenetrating polymer network. Zinc ion imprinted polymer networks showed good selectivity for the target ion.
基金supported by the Global Rice Science Partnership(GRiSP) Staff Development Fundthe Swiss Agency for Development and Cooperation(SDC) awarded to Dr.S.M.Impa,International Rice Research Institute,Philippines,through its Research Fellow Partnership Programme
文摘Zinc(Zn) deficiency in paddy soils is often a problem for rice production.Flooding can decrease metal availability in some noncalcareous soils through different mechanisms associated with soil redox status.Laboratory experiments were performed in order to better understand the processes that governed the dynamics of Zn in non-calcareous paddy soils at varying redox potentials(Eh).Airdried non-calcareous soil samples collected from four different paddy field sites in the Philippines were submerged and incubated in a reaction cell with continuous stirring and nitrogen purging for 4 weeks,and then purged with compressed air for another week to reoxidize the system.The Eh of the four soils started at 120 to 300 mV,decreased to —220 to —300 mV after 100 to 250 h of reduction,and was maintained at this low plateau for about 2 weeks before increasing again upon reoxidation.Zinc solubility showed contrasting patterns in the four soils,with two of the soils showing a decrease in soluble Zn as the Eh became low,probably due to zinc sulfide(ZnS) precipitation.In contrast,the other two soils showed that Zn solubility was maintained during the reduced phase which could be due to the competition with iron(Fe) for precipitation with sulfide.Differences in the relative amounts of S,Fe,and manganese(Mn) oxides in the four soils apparently influenced the pattern of Zn solubility after flooding.