The procedure of enzymatic aqueous extraction of soybean oil was assessed when two-step controlled enzymatic hydrolysis was applied. With aqueous extraction of soybean oil-containing protein, the highest yield of oil ...The procedure of enzymatic aqueous extraction of soybean oil was assessed when two-step controlled enzymatic hydrolysis was applied. With aqueous extraction of soybean oil-containing protein, the highest yield of oil was 96.1% at the optimized conditions studied. Soybean oil-containing protein was hydrolyzed and resulted in releasing part of oil. The separated protein that contained 40% oil was enriched due to its adsorption capacity of released oil, the average oil extraction yeild reached 93.5%. Then the high oil content protein was hydrolyzed again to release oil by enzyme, the oil extraction yeild was 80.4%. As a result, high quality of soybean oil was obtained and the content of total oil yield was 74.4%.展开更多
This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of pho...This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of phosphorus from aqueous solutions at various concentrations, p H levels and contact time. The desorption of phosphorus(P) from adsorbents was done immediately after sorption at the maximum initial concentration using the successive dilution method. The characterization of FTIR, SEM, and XRD indicated that n ZVI was successfully loaded to the surface of natural bentonite. The sorption of phosphorus on B-n ZVI was observed to be p H-dependent, with maximum phosphorus removal occurring at the p H range of 2 to 5. The results demonstrate that the maximum sorption capacities of natural bentonite and B-n ZVI were 4.61 and 27.63 mg·g^(-1), respectively.Langmuir, Freundlich, and Redlich–Peterson models properly described the sorption isotherm data. For either adsorbent, desorption isotherms did not coincide with their corresponding sorption isotherms, suggesting the occurrence of irreversibility and hysteresis. The average percentages of retained phosphorus released from natural bentonite and B-n ZVI were 80% and 9%, respectively. The results indicated that sorption kinetics was best described by the pseudo-second-order model. The present study suggests that B-n ZVI could be used as a suitable adsorbent for the removal of phosphorus from aqueous solutions.展开更多
文摘The procedure of enzymatic aqueous extraction of soybean oil was assessed when two-step controlled enzymatic hydrolysis was applied. With aqueous extraction of soybean oil-containing protein, the highest yield of oil was 96.1% at the optimized conditions studied. Soybean oil-containing protein was hydrolyzed and resulted in releasing part of oil. The separated protein that contained 40% oil was enriched due to its adsorption capacity of released oil, the average oil extraction yeild reached 93.5%. Then the high oil content protein was hydrolyzed again to release oil by enzyme, the oil extraction yeild was 80.4%. As a result, high quality of soybean oil was obtained and the content of total oil yield was 74.4%.
文摘This study addresses the synthesis of nanoscale zero-valent iron(n ZVI) in the presence of natural bentonite(B-n ZVI) using green tea extract. The natural bentonite and B-n ZVI were then applied for the removal of phosphorus from aqueous solutions at various concentrations, p H levels and contact time. The desorption of phosphorus(P) from adsorbents was done immediately after sorption at the maximum initial concentration using the successive dilution method. The characterization of FTIR, SEM, and XRD indicated that n ZVI was successfully loaded to the surface of natural bentonite. The sorption of phosphorus on B-n ZVI was observed to be p H-dependent, with maximum phosphorus removal occurring at the p H range of 2 to 5. The results demonstrate that the maximum sorption capacities of natural bentonite and B-n ZVI were 4.61 and 27.63 mg·g^(-1), respectively.Langmuir, Freundlich, and Redlich–Peterson models properly described the sorption isotherm data. For either adsorbent, desorption isotherms did not coincide with their corresponding sorption isotherms, suggesting the occurrence of irreversibility and hysteresis. The average percentages of retained phosphorus released from natural bentonite and B-n ZVI were 80% and 9%, respectively. The results indicated that sorption kinetics was best described by the pseudo-second-order model. The present study suggests that B-n ZVI could be used as a suitable adsorbent for the removal of phosphorus from aqueous solutions.