Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami...Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.展开更多
Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adso...Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.展开更多
Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporat...Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporating conductive support or foreign elements have been adopted to develop efficient electrocat- alysts. Herein, we summarize recent progresses and propose in-situ electrochemical activation as a new pretreating technique for enhanced catalytic performances. The activation techniques mainly comprise facile electrochemical processes such as anodic oxidation, cathodic reduction, etching, lithium-assisted tuning and counter electrode electro-dissolution. During these electrochemicaI treatments, the catalyst surfaces are modified from bulk phase, which can tune local electronic structures, create more active spe- cies. enlarge surface area and thus improve the catalytic performances. Meanwhile, this technique can couple the atomic, electronic structures with electrocatalysis mechanisms for water splitting. Compared to traditional chemical treatment, the in-situ electrochemical activation techniques have superior advantages such as facile operation, mild environment, variable control, high efficiency and flex- ibility. This review may provide guidance for improving water electrolysis efficiencies and hold promis- ing for application in many other energy-conversion fields such as supercapacitors, fuel cells and batteries.展开更多
基金Project (2011BAE22B03) supported by National Key Technologies R&D Program of ChinaProject (2011DFA50906) supported by the International S&T Cooperation Program of China
文摘Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.
基金Supported by the Taihu Special Project of Water Pollution Control,Jiangsu Province(No.TH2013214)the National Water Pollution Control and Management Technology Major Project(No.2012ZX07103-005)+1 种基金the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(No.BY2011165)the Open Foundation of State Key Laboratory of Lake Science and Environment,CAS(No.2014SKL005)
文摘Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.
基金financially supported by Shandong Provincial Natural Science Foundation,China (ZR2017MB059)the National Natural Science Foundation of China (21776314)the Fundamental Research Funds for the Central Universities (18CX05016A)
文摘Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporating conductive support or foreign elements have been adopted to develop efficient electrocat- alysts. Herein, we summarize recent progresses and propose in-situ electrochemical activation as a new pretreating technique for enhanced catalytic performances. The activation techniques mainly comprise facile electrochemical processes such as anodic oxidation, cathodic reduction, etching, lithium-assisted tuning and counter electrode electro-dissolution. During these electrochemicaI treatments, the catalyst surfaces are modified from bulk phase, which can tune local electronic structures, create more active spe- cies. enlarge surface area and thus improve the catalytic performances. Meanwhile, this technique can couple the atomic, electronic structures with electrocatalysis mechanisms for water splitting. Compared to traditional chemical treatment, the in-situ electrochemical activation techniques have superior advantages such as facile operation, mild environment, variable control, high efficiency and flex- ibility. This review may provide guidance for improving water electrolysis efficiencies and hold promis- ing for application in many other energy-conversion fields such as supercapacitors, fuel cells and batteries.