Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami...Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.展开更多
Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn...Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.展开更多
Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-...Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-6%Al-5%Sn(mass fraction) alloys in seawater were studied and compared with the commercial AZ31 and AP65 alloys. The results show that the Mg-6%Al-1%Sn alloy obtains the most negative discharge potential of average-1.611V with a electric current density of 100 mA/cm2. EIS studies reveal that the Mg-Al-Sn alloy/seawater interfacial electrochemical process is determined by an activation controlled reaction. The assembled prototype batteries with Mg-6%Al-1%Sn alloy as anodes and Ag Cl as cathodes exhibit a satisfactory integrated discharge properties.展开更多
基金Project (2011BAE22B03) supported by National Key Technologies R&D Program of ChinaProject (2011DFA50906) supported by the International S&T Cooperation Program of China
文摘Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.
基金Project(JPPT-115-168)supported by the National Key Science and Technological Project of ChinaProject(51101171)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.
基金Project supported by the Fundamental Research Funds for the Central Universities of China
文摘Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-6%Al-5%Sn(mass fraction) alloys in seawater were studied and compared with the commercial AZ31 and AP65 alloys. The results show that the Mg-6%Al-1%Sn alloy obtains the most negative discharge potential of average-1.611V with a electric current density of 100 mA/cm2. EIS studies reveal that the Mg-Al-Sn alloy/seawater interfacial electrochemical process is determined by an activation controlled reaction. The assembled prototype batteries with Mg-6%Al-1%Sn alloy as anodes and Ag Cl as cathodes exhibit a satisfactory integrated discharge properties.