期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
低阻陶瓷膜组件回收烟气水热试验研究
1
作者 向凤龄 谷小兵 +4 位作者 张金瑶 岳朴杰 荆亚超 王祖武 袁畅 《能源环境保护》 2020年第5期23-29,共7页
采用陶瓷膜组件进行了烟气水分及余热的回收实验,研究了膜间距(20、25、34 mm)、冷却水温度(15~35℃)、冷却水流量(50~170 L/h)和陶瓷膜平均孔径(50、100 nm)对膜组件水热回收性能的影响。结果表明:膜组件间距的减小、冷却水流量的提高... 采用陶瓷膜组件进行了烟气水分及余热的回收实验,研究了膜间距(20、25、34 mm)、冷却水温度(15~35℃)、冷却水流量(50~170 L/h)和陶瓷膜平均孔径(50、100 nm)对膜组件水热回收性能的影响。结果表明:膜组件间距的减小、冷却水流量的提高和冷却水温度的降低均能有效提高陶瓷膜对烟气的水热回收性能;减小陶瓷膜的孔径能有效提高陶瓷膜的水通量和水回收效率,但对热通量的影响较小;在实验工况下,陶瓷膜的水、热通量以及水回收效率的最高值分别为29 kg·m^-2·h^-1、65 MJ·m^-2·h^-1和46%;与平直翅片换热器和螺旋板换热器相比,陶瓷膜组件的阻力因子较小,烟气在膜组件的阻力因子仅为0.0059。 展开更多
关键词 陶瓷膜 水热回收 阻力因子
下载PDF
用于燃煤烟气除湿消白的湿电平板降膜模拟及试验研究 被引量:3
2
作者 张昊 董勇 +2 位作者 赖艳华 崔琳 杨潇 《化工学报》 EI CAS CSCD 北大核心 2021年第4期2249-2257,共9页
为了节省电厂空间,提高设备集成应用,提出了一种溶液除湿与湿电相结合的工艺,使用除湿溶液在阳极板布膜,同时实现除尘与除湿功能。通过湿电平板降膜除湿过程的数值模拟与试验,探究了烟气及溶液参数对水热回收性能的影响。结果显示数学... 为了节省电厂空间,提高设备集成应用,提出了一种溶液除湿与湿电相结合的工艺,使用除湿溶液在阳极板布膜,同时实现除尘与除湿功能。通过湿电平板降膜除湿过程的数值模拟与试验,探究了烟气及溶液参数对水热回收性能的影响。结果显示数学模型能够较好地反映该过程,试验工况下湿电平板降膜最高水、热回收率分别可达37.5%和35%,水蒸气所释放的汽化潜热大部分转移到溶液。除湿过程对于湿电除尘效果几乎没有影响,通过焓湿图分析及可视化比较证明,湿电平板降膜除湿可以实现白烟的削弱甚至完全消除。 展开更多
关键词 燃煤烟气 水热回收 溶液除湿 数值模拟 白烟
下载PDF
Recovery of titanium from undissolved residue(tionite) in titanium oxide industry via NaOH hydrothermal conversion and H_2SO_4 leaching 被引量:3
3
作者 孟凡成 薛天艳 +2 位作者 刘亚辉 张国之 齐涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1696-1705,共10页
To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum ... To recover titanium from tionite, a new process consisting of NaOH hydrothermal conversion, water washing, and H2SO4 leaching for TiO2 preparation was developed. The experimental results show that under the optimum hydrothermal conversion conditions, i.e., 50% NaOH (mass fraction) solution, NaOH/tionite mass ratio of 4:1, reaction temperature of 240 ℃reaction time of 1 h and oxygen partial pressure of 0.25 MPa, the titanium was mainly converted into Na2TiO3, and the conversion was 97.2%. The unwanted product Na2TiSiO5 remained stable in water washing, and its formation was prevented by improving NaOH concentration. In water washing process, about 97.6% of Na+ could be recycled by washing the hydrothermal product. The NaOH solutions could be reused after concentration. 96.7% of titanium in the washed product was easily leached in H2SO4 solution at low temperatures, forming titanyl sulfate solution to further prepare TiO2. 展开更多
关键词 tionite titanium recovery NaOH hydrothermal conversion water washing H2SO4 leaching
下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:3
4
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 gas engine heat pump coefficient of performance primary energy ratio heating mode heat recovery
下载PDF
Performance and Optimization for a Ground-Coupled Liquid Loop Heat Recovery Ventilation System 被引量:1
5
作者 周亚素 Per FAHLEN Torbjrn LINDHOLM 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期749-755,共7页
Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging sys... Ground-coupled heat pumps(GCHP)are commonly used in residential heating system.To mitigate the boreholes temperature dropping with operating time,a new exhaust-air recharging system is developed.The new recharging system can be used in three operational modes.In this paper,a ground-coupled heat recovery ventilation(HRV)model is discussed.A thermal model is set up to find the optimal brine flow rate and heat transfer allocation ratio between exhaust and supply coils for maximum heat recovery efficiency.Contrary to the conventional liquid-loop HRV systems,the brine temperature entering the exhaust coil never goes blow zero(0℃),and hence defrosting is needless in the ground-coupled HRV system.This can make the ground-coupled HRV system over 20% more efficient than a conventional HRV system at low outdoor temperatures. 展开更多
关键词 a ground-coupled HRV system thermal model heat recovery efficiency coils allocation ratio brine flow rate
下载PDF
Dynamic simulation of drum level sloshing of heat recovery steam generator
6
作者 曹小玲 皮正仁 +2 位作者 蒋绍坚 杨卫宏 B.Wlodzimerz 《Journal of Central South University》 SCIE EI CAS 2013年第2期413-423,共11页
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ... Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level. 展开更多
关键词 combined cycle heat recovery steam generator false level drum level sloshing model modularization modeling
下载PDF
Condensing Heat Exchanger
7
作者 Janusz Lichota Krzysztof Polko Kazimierz Wojs 《Journal of Energy and Power Engineering》 2014年第9期1511-1542,共32页
The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence... The paper shows a method of designing a heat exchanger recovering heat from the condensation of water vapour contained in flue gases. A heat exchanger condenses water vapour and SO2 (sulphur dioxide) in the presence of inert gases (CO2, CO, N2, O2) contained in flue gases. A mathematical model and a sample design of a heat exchanger were presented. The heat exchange is capable of recovering from a dozen or so to several dozen percent of heat from flue gases escaping into the atmosphere. A second advantage of the heat exchanger is the possibility to reduce the emissions of SO2 considerably. Depending on the parameters, it can be even a sevenfold reduction in the emissions. The main mathematical tool used for designing the condensing heat exchanger is the Colburn-Hougen method. The authors omitted that part of the method which requires iterative calculations. The Mollier diagram was used instead. 展开更多
关键词 Heat exchanger CONDENSATION heat recovery flue gases.
下载PDF
Performance analysis of air-water dual source heat pump water heater with heat recovery 被引量:9
8
作者 CHEN ZeShao TAO WenQuan +1 位作者 ZHU YanWen HU Peng 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2148-2156,共9页
A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre... A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value. 展开更多
关键词 heat pump water heater waste heat recovery dual source heat pump correspondence analysis method performance analysis
原文传递
Study on pneumatic-fuel hybrid system based on waste heat recovery from cooling water of internal combustion engine 被引量:5
9
作者 FANG YiDong LI DaoFei +3 位作者 FAN ZhiPeng XU HuanXiang WANG Lei YU XiaoLi 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第12期3070-3080,共11页
The paper proposes a novel pneumatic-fuel hybrid system,which combines a traditional internal combustion engine(ICE)and a pneumatic engine.One important merit of this concept is that the system can recover waste from ... The paper proposes a novel pneumatic-fuel hybrid system,which combines a traditional internal combustion engine(ICE)and a pneumatic engine.One important merit of this concept is that the system can recover waste from cooling water of internal combustion engine to optimize the working process of pneumatic engine,and thus to improve the entire efficiency of the hybrid system.Meanwhile,energy-saving effect due to lower cooling fan power can be achieved on ICE by waste heat recovery of pneumatic engine.Based on thermodynamic analysis,an experimental system is designed and established for verification.The experimental results show that the performance of pneumatic engine is improved when the waste heat recovery concept of the hybrid system is applied.Then an application example on a 4-cylinder engine is analyzed and discussed using numerical simulation.The results show that the fan power of the ICE cooling system can be saved up to 50%by applying the hybrid system.Considering the appreciable improvements on the energy efficiency with only limited system modifications when the concept is applied to traditional ICE based power systems,the proposed hybrid concept has the potential to serve as an alternative technology aiming for energy saving and emission reduction. 展开更多
关键词 pneumatic engine pneumatic-fuel hybrid system waste heat recovery experimental study efficiency improvement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部