To investigate the hydrogen permeability of calcium fluoride used for electroslag remelting (ESR) process, "Gas-slag- metal" osmosis process under argon atmosphere saturated with water vapor at 318 K was used to s...To investigate the hydrogen permeability of calcium fluoride used for electroslag remelting (ESR) process, "Gas-slag- metal" osmosis process under argon atmosphere saturated with water vapor at 318 K was used to study the hydrogen permeability of slag containing calcium fluoride. The results indicate that the conventional slag, consisting of 70% CaF2 and 30% A1203, has the lowest hydrogen permeability. A parameter EH was proposed for evaluation of the hydrogen permeability of slags containing calcium fluoride. The hydrogen permeability decreases with increasing EH to a certain extent. An appropriate choice of slag for the ESR process can be obtained. These results also suggest that the hydrogen pick-up in steel after remelting might be reduced when a slag with low hydrogen permeability is used.展开更多
We describe the synthesis of even-dispersed palladium nanoparticles(Pd NPs)confined within a cellulose nanofiber(CNF)matrix for developing a high-performance and recyclable catalyst.The CNF matrix was composed of CNF-...We describe the synthesis of even-dispersed palladium nanoparticles(Pd NPs)confined within a cellulose nanofiber(CNF)matrix for developing a high-performance and recyclable catalyst.The CNF matrix was composed of CNF-assembled mesoporous nanosheets and appeared as soft and hydrophilic foam.Ultrafine Pd NPs(∼6 nm)with high-loading(9.6 wt%)were in situ grown on these mesoporous nanosheets,and their dense spatial distributions were likely to generate nano-confinement catalytic effects on the reactants.Consequently,the CNF-confined Pd NPs(CNF-Pd)exhibited an enhanced room-temperature catalytic activity on the model reaction of 4-nitrophenol hydrogenation with a highest rate constant of 8.8×10^−3 s^−1 and turnover frequency of 2640 h The CNF Pd catalyst possessed good chemical stability and recyclability in aqueous media which could be reused for at least six cycles without losing activity.Moreover,chemoselective reduction of 3 nitrostyrene was achieved with high yield(80%–98%)of 3-aminostyrene in alcohol/water cosolvent.Overall,this work demonstrates a positive nanoconfinement effect of CNFs for developing stable and recyclable metal NP catalysts.展开更多
基金Project(50904015) supported by the National Natural Science Foundation of ChinaProject(N090402012) supported by the Fundamental Research Funds for Central Universities of China
文摘To investigate the hydrogen permeability of calcium fluoride used for electroslag remelting (ESR) process, "Gas-slag- metal" osmosis process under argon atmosphere saturated with water vapor at 318 K was used to study the hydrogen permeability of slag containing calcium fluoride. The results indicate that the conventional slag, consisting of 70% CaF2 and 30% A1203, has the lowest hydrogen permeability. A parameter EH was proposed for evaluation of the hydrogen permeability of slags containing calcium fluoride. The hydrogen permeability decreases with increasing EH to a certain extent. An appropriate choice of slag for the ESR process can be obtained. These results also suggest that the hydrogen pick-up in steel after remelting might be reduced when a slag with low hydrogen permeability is used.
基金the National Natural Science Foundation of China(31925028 and 31670583)the Special Project for Double First-Class-Cultivation of Innovative Talents(000/41113102)。
文摘We describe the synthesis of even-dispersed palladium nanoparticles(Pd NPs)confined within a cellulose nanofiber(CNF)matrix for developing a high-performance and recyclable catalyst.The CNF matrix was composed of CNF-assembled mesoporous nanosheets and appeared as soft and hydrophilic foam.Ultrafine Pd NPs(∼6 nm)with high-loading(9.6 wt%)were in situ grown on these mesoporous nanosheets,and their dense spatial distributions were likely to generate nano-confinement catalytic effects on the reactants.Consequently,the CNF-confined Pd NPs(CNF-Pd)exhibited an enhanced room-temperature catalytic activity on the model reaction of 4-nitrophenol hydrogenation with a highest rate constant of 8.8×10^−3 s^−1 and turnover frequency of 2640 h The CNF Pd catalyst possessed good chemical stability and recyclability in aqueous media which could be reused for at least six cycles without losing activity.Moreover,chemoselective reduction of 3 nitrostyrene was achieved with high yield(80%–98%)of 3-aminostyrene in alcohol/water cosolvent.Overall,this work demonstrates a positive nanoconfinement effect of CNFs for developing stable and recyclable metal NP catalysts.