The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen...The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.展开更多
The increasing growth of energy consumption and the limited fossil energy resources, as the main source of energy in Iran and other parts of the world, has persuaded the industrial societies to struggle more for suppl...The increasing growth of energy consumption and the limited fossil energy resources, as the main source of energy in Iran and other parts of the world, has persuaded the industrial societies to struggle more for supplying their needed energy at present and in future. More than 26% of energy in Iran is consumed by industry sector, in which cement section is an important subsectors highly depending on energy. Cement section is so dependent on energy, that more 15% of the related energy is consumed in this section, and its present conditions of energy consumption need a serious revision. Production management, changing the ingredients, finding alternative energy strategies, and importing modem technologies can result in reduction of energy consumption in this section. In this study, while investigating energy consumption of various machineries in the form of electricity and heat in a cement factory, the authors have studied the strategies for decreasing energy consumption in every stage of the production process. Recent studies in the field of cement industry are indicative of recent changes in production methods with priority of reducing energy consumption. Among these changes, we can refer to replacing wet method by dry method, or developing pre-heating center and pre-calcinators. In cement industry, nowadays, not only there is an emphasis on controlling the energy consumption for lower production costs, but as production of every 1 kg of cement gives out more than 0.7 kg CO2 and other pollution particles, environmental issues are also seriously considered. Therefore, if we use alternative fuels with less carbon in their structural formula, besides decreasing energy consumption and costs, there will be less pollutions in the environment as well.展开更多
基金Project(50150503-12)supported by National Science and Technology Major Program of the Ministry of Science and Technology of ChinaProject(2010E-2103)supported by Research on Key Technology in Tarim Oilfield Exploration and Development,China
文摘The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.
文摘The increasing growth of energy consumption and the limited fossil energy resources, as the main source of energy in Iran and other parts of the world, has persuaded the industrial societies to struggle more for supplying their needed energy at present and in future. More than 26% of energy in Iran is consumed by industry sector, in which cement section is an important subsectors highly depending on energy. Cement section is so dependent on energy, that more 15% of the related energy is consumed in this section, and its present conditions of energy consumption need a serious revision. Production management, changing the ingredients, finding alternative energy strategies, and importing modem technologies can result in reduction of energy consumption in this section. In this study, while investigating energy consumption of various machineries in the form of electricity and heat in a cement factory, the authors have studied the strategies for decreasing energy consumption in every stage of the production process. Recent studies in the field of cement industry are indicative of recent changes in production methods with priority of reducing energy consumption. Among these changes, we can refer to replacing wet method by dry method, or developing pre-heating center and pre-calcinators. In cement industry, nowadays, not only there is an emphasis on controlling the energy consumption for lower production costs, but as production of every 1 kg of cement gives out more than 0.7 kg CO2 and other pollution particles, environmental issues are also seriously considered. Therefore, if we use alternative fuels with less carbon in their structural formula, besides decreasing energy consumption and costs, there will be less pollutions in the environment as well.