In order to better monitor N and P pollutants, heavy metals, pesticides and other organic pollutants in water areas, we researched sensitivity and tolerance of aquatic algae on water environment and effects of the pol...In order to better monitor N and P pollutants, heavy metals, pesticides and other organic pollutants in water areas, we researched sensitivity and tolerance of aquatic algae on water environment and effects of the pollutants on algae population, analyzing toxin and enrichment of pollutants on algae. The results indicated that aquatic alga is a better indicator for some pollutants in water, for which water contamination can be surveyed and analyzed rapidly.展开更多
[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga,...[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.展开更多
Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on sea...Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on seagrass beds by direct and indirect ways. The competition for living space and using resources is the most direct effect on seagrass beds when macroalgae are blooming in an aquatic ecosystem. The consequence of macroalgae blooms(e.g., light reduction, hypoxia, and decomposition) can produce significant indirect effects on seagrass beds. Light reduction by the macroalgae can decrease the growth and recruitment of seagrasses, and decomposition of macroalgae mats can increase the anoxic and eutrophic conditions, which can further constrict the seagrass growth. Meanwhile, the presence of seagrass shoots can provide substrate for the macroalgae blooms. Controlling nutrient sources from the land to coastal waters is a general efficient way for coastal management. Researching into the synergistical effect of climate change and anthropognic nutrient loads on the interaction between searsasses and macroalgae can provide valuable information to decrease the negative effects of macroalgae blooms on seagrasses in eutrophic areas.展开更多
Three new species of Batrachospermum Roth (Batrachospermales, Rhodophyta) from China are described in this paper. B. yunnanense sp. nov. has long-cylindrical trichogynes with long stalks and is diagnostic of section V...Three new species of Batrachospermum Roth (Batrachospermales, Rhodophyta) from China are described in this paper. B. yunnanense sp. nov. has long-cylindrical trichogynes with long stalks and is diagnostic of section Virescentia. Within this section, B. yunnanense is similar to B. helminthosum Bory emend. Sheath et al., but it is dioecious and has curved carpogonial branches, while the latter is monoecious and has straight carpogonial branches. It is also similar to B. transtaganum Reis, but it differs from the latter in long carpogonia, big carposporophytes and carposporangia. It is considered that B. nothocladoideum sp. nov. is assigned to section Contorta, subsection Kushiroense, because its carpogonial branches are twisted and gonimoblast filaments are loosely agglomerated. This new species similar to B. iriomotense Kumano, but with short fascicles, long-ovoid or subpyriform cells, numerous terminal hairs, long-ellipsoid trichogynes, big carposporophytes and small carpo- sporangia. The plant is quite tough and cartilaginous and similar to Nothocladus in gross morphology, but its carposporophytes are compact instead of diffuse. This shows that it may be a transitional species between section Contorta and genus Nothocladus. So, B. transitorium sp. nov. should belong to section Contorta, subsection Kushiroense, because of its curved or twisted carpogonial branches and loosely agglomerated gonimoblast filaments, with globose or subglobose cells in fascicles similar to B. spermatiophorum Vis et Sheath, but no colourless spermatiophores. In terms of small and numerous carposporophytes, B. transitorium sp. nov. is similar to some species of section Batrachospermum. However, their other features are unique, indicating its transitional nature between section Contorta and Batrachospermum.展开更多
The scyphozoan Aurelia aurita (Linnaeus) sp. 1., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal spe...The scyphozoan Aurelia aurita (Linnaeus) sp. 1., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp. 1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus A rtemia nauplii for 12-24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no sig- nificant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.展开更多
Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluores...Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence (F_v/F_m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO_4-P. The photosynthetic capacity of photosystem Ⅱ (PSⅡ) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO_3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.展开更多
To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two...To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.展开更多
In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals A1, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of t...In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals A1, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of the three heavy metals decreased significantly during the experimental period in an algal biomass dependent manner. The biofiltration capacity of the alga for A1, Cr, and Zn is 10.1%-72.6%, 52.5%-83.4% and 36.5%,91.7%, respectively. Using more materials resulted in stronger heavy metal removal. Additionally, the concentration of chl-a, TN, TP and DIN of water samples fxom aquariums involving large, medium, and small algal biomass cultivation increased first and then decreased during the experiment. COD value of all three groups decreased with time and displayed algal biomass dependency: more algae resulting in a greater COD value than those of less biomass. Furthermore, changes in COD reflect an obvious organic particles deprivation process of algae. This is the first report on heavy metal removal effect by Gracilaria species. The results suggest that macroalgae can be used as a biofilter for the treatment of nutrient-enriched or heavy-metal polluted water, to which an appropriate time range should be carefully determined.展开更多
Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of a...Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of aquatic macrophytes on phytoplankton growth, have been received world-wide attention. In this study, the allelopathic activity of the invasive macrophyte, Eichhornia crassipes (water hyacinth), on blue-green algae, Microcystis aeruginosa (PCC7806) was investigated using coexistence assay. Our results showed that water hyacinth had disparate effects on the growth ofM~ aeruginosa (PCC7806) under different initial algal densities. Under lower initial algal density (OD650 = 0.10 and OD650 = 0.05), the algal growth was significantly inhibited by water hyacinth (inhibition ratio was 95.6% and 97.3%, respectively). While it was stimulated at higher initial algal densities (OD650 = 0.20). Water hyacinth inhibited the growth of algae mainly through its root system. Culture water from water hyacinth and aqueous methanol extracts from dry roots samples also showed inhibition effects on algal growth. The inhibition effects increased as the increase of crude extract concentration, suggest that water hyacinth may excrete inhibitory substances from root system and show allelopathic inhibitory potential to the growth ofM. aeruginosa.展开更多
Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (He...Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (Heterosigma akashiwo, Alexandrium tamarense and Prorocentrum micans) were inves- tigated. Liquid-liquid fractionation and HPLC analysis for methanol extract of U. pertusa were carried out. Growth of the three microalgae was significantly inhibited by the distilled water extract of U. pertusa at relatively higher concentration. However, the cells of the three microalgae did not die completely even at high concentration. Methanol extract of U. pertusa showed the highest growth inhibition on the three mi- croalgae, and all the cells of the three microalgae were killed at relatively high concentration. The other three organic solvent extracts of U. pertusa had no apparent effect on the three microalgae. The results of bioassays and HPLC analysis suggested that the inhibitory substances in U. pertusa to the microalgal growth had relatively high polarities. H. akashiwo was the most sensitive one while A. tamarense was the most tolerant one to the growth inhibitory substances.展开更多
The purpose of this research is to investigate a biofilm system with trickling filter as a biological alternative process during low cost treatment connection with the possibility of reducing nutrients such as phospho...The purpose of this research is to investigate a biofilm system with trickling filter as a biological alternative process during low cost treatment connection with the possibility of reducing nutrients such as phosphorus. Given that nitrogen with phosphorus that are leading causes of algal bloom resulting in increased eutrophication or chemical nutrients are the basis of this document analysis. This increase in organisms results in less oxygen in water bodies and at times, slow decay leads many fresh water ponds, lakes and rivers. The process of eutrophication unfortunately tends to favor pollution and algae, which reduce the quality of the water. Kosovo has not a long tradition in the treatment of wastewater, especially in removing phosphorus, since the country has only a plant for wastewater treatment. The present plant is intended to protect the Klina river from eutrophication from wastewater discharged after treatment. This plant currently reduced phosphorus efficiently, but the goal of this paper is to increase the percentage of removal of phosphorus to 40% through trickling filters, presenting options for optimizing work on plant Skenderaj.展开更多
A hydrodynamic model and an aquatic ecology model of Dianshan Lake,Shanghai,were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D,which is an integrated modelling suite o...A hydrodynamic model and an aquatic ecology model of Dianshan Lake,Shanghai,were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D,which is an integrated modelling suite offered by Deltares. The simulated water elevation,current velocity,and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data,as well as simulated results. In 2008,the dominant algae in Dianshan Lake was Bacillariophyta from February to March,while it was Chlorophyta from April to May,and Cyanophyta from July to August. In summer,the biomass of Cyanophyta grew quickly,reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however,increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions,resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.展开更多
We examined changes in biomass and species dominance of periphyton in response to nitrogen (N) and phosphorus (P) enrichment in 12 mesocosms representing eutrophic aquatic ecosystems. The 100-L mesocosms consisted of ...We examined changes in biomass and species dominance of periphyton in response to nitrogen (N) and phosphorus (P) enrichment in 12 mesocosms representing eutrophic aquatic ecosystems. The 100-L mesocosms consisted of lake water and pond sediment, and N and P were applied weekly. Periphyton samples were taken to assess the biomass (as estimated by the concentration of chlorophyll a (chl a)) and to determine which species were dominant. The mean periphyton biomass (chl a) in the P-enriched treatment did not differ from that in the control group, but increased with N enrichment. Compared with that in the control group, the chl a concentration increased with N+P enrichment in the early stages of the experiment, but decreased in the later stages. The decline in periphyton biomass at the later stages of the experiment was due to limited light availability, which resulted from the increased phytoplankton density in the experiment. The nutrient enrichment treatments resulted in changes in the dominant algal species in the periphyton, suggesting that various algal species showed different responses to different nutrients. The results of this study have implications for nutrient management in aquatic ecosystems.展开更多
Nanoparticles,or particles in size of 1-100 nm,are extensively used in the world in different applications.For instance,single-walled carbon nanotubes(SWCNTs) are commonly used in consumer products,such as biosensors,...Nanoparticles,or particles in size of 1-100 nm,are extensively used in the world in different applications.For instance,single-walled carbon nanotubes(SWCNTs) are commonly used in consumer products,such as biosensors,drug and vaccine delivery transporters,and novel biomaterials.Although nanoparticles do not cause safety concerns to consumers who use nanoparticle-containing products,these small particles are potentially harmful for workers who produce them in factories or in cases of discharge to aquatic ecosystems.SWCNTs do not have a natural analogue,so the effects on health of their disposal remain largely unknown.In this study,we evaluated the effects of SWCNTs on a population of the green microalga Chromochloris zofingiensis and the profile and production of pigments and fatty acids.The alga was incubated with SWCNTs for 6 days in 0(control),40,80,160,or 320 mg/L concentrations.SWCNTs showed both positive and negative effects on the growth of C.zofingiensis,with a biomass enhancement at low levels(40-160 mg/L) but inhibition at high levels(320 mg/L).By contrast,a decreased accumulation of fatty acids and pigments of C.zofingiensis was observed over the range of the tested concentrations.These results indicate that the markers on the inhibitive toxicity of SWCNTs are increasingly sensitive in the following order:biomass and fatty acids < primary carotenoids < chlorophylls < secondary carotenoids.C.zofingiensis is a suitable microalga for evaluating the ecotoxicological hazards of SWCNTs,especially in terms of pigmentation response.展开更多
This study was conducted to screen the commercial herbicides for algae control in the aquarium. Three herbicides of ametryn, atrazine and metribuzine were tested at concentrations ranging from 0.625 to 10.00 ppm. It i...This study was conducted to screen the commercial herbicides for algae control in the aquarium. Three herbicides of ametryn, atrazine and metribuzine were tested at concentrations ranging from 0.625 to 10.00 ppm. It is found that ametryn was the most effective herbicide that inhibited algal growth. Ametryn concentration that caused 50% inhibition on algae growth after exposure for 21 days was 0.335 ppm. Survival rate of oruamental fish, Harlequin rasbora (Trigonostigma heteromorpha) and growth rate of aquatic plant (Elodea canadensis) exposed to 10 ppm ametryn were compared with those exposed to algaecide. The result showed that there was no significant difference in survival rate of Harlequin rasbora when exposed to ametryn, algaecide and dechlorinized tap water (control). However, growth rate of E. canadensis was lower after exposure of ametryn compared to those exposed to algaecide and tap water. These results suggest that ametryn has potential to be used as an algal inhibitor in aquarium.展开更多
基金Supported by China Agriculture Research System (CARS-49)~~
文摘In order to better monitor N and P pollutants, heavy metals, pesticides and other organic pollutants in water areas, we researched sensitivity and tolerance of aquatic algae on water environment and effects of the pollutants on algae population, analyzing toxin and enrichment of pollutants on algae. The results indicated that aquatic alga is a better indicator for some pollutants in water, for which water contamination can be surveyed and analyzed rapidly.
文摘[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.
基金funded by the Natural Science Foundation of China (41106099)CAS Scientific Project of Innovation and Interdisciplinary, the Ministry of Science and Technology Project Foundation (2014FY210600)+1 种基金Yantai Science and Technology Bureau (2011061)the Natural Science Foundation of Shandong Province (ZR 2009EQ006)
文摘Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on seagrass beds by direct and indirect ways. The competition for living space and using resources is the most direct effect on seagrass beds when macroalgae are blooming in an aquatic ecosystem. The consequence of macroalgae blooms(e.g., light reduction, hypoxia, and decomposition) can produce significant indirect effects on seagrass beds. Light reduction by the macroalgae can decrease the growth and recruitment of seagrasses, and decomposition of macroalgae mats can increase the anoxic and eutrophic conditions, which can further constrict the seagrass growth. Meanwhile, the presence of seagrass shoots can provide substrate for the macroalgae blooms. Controlling nutrient sources from the land to coastal waters is a general efficient way for coastal management. Researching into the synergistical effect of climate change and anthropognic nutrient loads on the interaction between searsasses and macroalgae can provide valuable information to decrease the negative effects of macroalgae blooms on seagrasses in eutrophic areas.
基金Project No. 30270119 and 39899400 supported by the National Nature Science Foundation of China.
文摘Three new species of Batrachospermum Roth (Batrachospermales, Rhodophyta) from China are described in this paper. B. yunnanense sp. nov. has long-cylindrical trichogynes with long stalks and is diagnostic of section Virescentia. Within this section, B. yunnanense is similar to B. helminthosum Bory emend. Sheath et al., but it is dioecious and has curved carpogonial branches, while the latter is monoecious and has straight carpogonial branches. It is also similar to B. transtaganum Reis, but it differs from the latter in long carpogonia, big carposporophytes and carposporangia. It is considered that B. nothocladoideum sp. nov. is assigned to section Contorta, subsection Kushiroense, because its carpogonial branches are twisted and gonimoblast filaments are loosely agglomerated. This new species similar to B. iriomotense Kumano, but with short fascicles, long-ovoid or subpyriform cells, numerous terminal hairs, long-ellipsoid trichogynes, big carposporophytes and small carpo- sporangia. The plant is quite tough and cartilaginous and similar to Nothocladus in gross morphology, but its carposporophytes are compact instead of diffuse. This shows that it may be a transitional species between section Contorta and genus Nothocladus. So, B. transitorium sp. nov. should belong to section Contorta, subsection Kushiroense, because of its curved or twisted carpogonial branches and loosely agglomerated gonimoblast filaments, with globose or subglobose cells in fascicles similar to B. spermatiophorum Vis et Sheath, but no colourless spermatiophores. In terms of small and numerous carposporophytes, B. transitorium sp. nov. is similar to some species of section Batrachospermum. However, their other features are unique, indicating its transitional nature between section Contorta and Batrachospermum.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB403603)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA0503 0401)the National Natural Science Founda-tion of Shandong Province,China(No.ZR2012DQ005)
文摘The scyphozoan Aurelia aurita (Linnaeus) sp. 1., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp. 1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus A rtemia nauplii for 12-24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no sig- nificant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.
基金Supported by the Technology Program of Basic Research of Qingdao(No.12-1-4-8-(2)-jch)
文摘Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence (F_v/F_m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO_4-P. The photosynthetic capacity of photosystem Ⅱ (PSⅡ) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO_3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.
基金Funded by the Natural Science Foundation of China (No.50178070)the Natural Science Foundation of Chongqing (Nos. 8091 and 7136)
文摘To understand the potential impact of the Three Gorges Reservoir on the aquatic ecosystem after the damming of the Yangtze River,we studied the community composition and temporal abundance distribution of algae in two types of water bodies:a segment of the Jialing River near its confluence with the Yangtze River as an example of the river-lake type,and Shuanglong Lake in Chongqing as an example of the lake type.In total,107 species belonging to 58 genera of 7 phyla were identified in the study area of the Jialing River,dominated by three groups with 49.5% diatoms,29.0% chlorophytes,and 11.4% cyanobacteria in the community composition.There were 122 species belonging to 66 genera of 8 phyla in Shuanglong Lake,dominated by the same three groups with 19.7% diatoms,48.4% chlorophytes,and 22.2% cyanobacteria.The densities of total algae and individual dominant groups were all much higher in the lake.More species of diatoms were found in the river-lake segment;whereas more chlorophyte species and cyanobacteriaum species were in the lake.There were 17 dominant species including 8 diatoms,4 chlorophytes,3 cyanobacteria and 2 cryptophytes in the river-lake segment,and 21 species in the lake,including 2 diatoms,9 chlorophytes,6 cyanobacteria,3 cryptophytes and a dinoflagellate.In eutrophic conditions,chlorophytes and cyanobacteria may proliferate in a lake-type area and diatoms may cause algal bloom in a relatively faster-flow lake-river type area.
文摘In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals A1, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of the three heavy metals decreased significantly during the experimental period in an algal biomass dependent manner. The biofiltration capacity of the alga for A1, Cr, and Zn is 10.1%-72.6%, 52.5%-83.4% and 36.5%,91.7%, respectively. Using more materials resulted in stronger heavy metal removal. Additionally, the concentration of chl-a, TN, TP and DIN of water samples fxom aquariums involving large, medium, and small algal biomass cultivation increased first and then decreased during the experiment. COD value of all three groups decreased with time and displayed algal biomass dependency: more algae resulting in a greater COD value than those of less biomass. Furthermore, changes in COD reflect an obvious organic particles deprivation process of algae. This is the first report on heavy metal removal effect by Gracilaria species. The results suggest that macroalgae can be used as a biofilter for the treatment of nutrient-enriched or heavy-metal polluted water, to which an appropriate time range should be carefully determined.
文摘Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of aquatic macrophytes on phytoplankton growth, have been received world-wide attention. In this study, the allelopathic activity of the invasive macrophyte, Eichhornia crassipes (water hyacinth), on blue-green algae, Microcystis aeruginosa (PCC7806) was investigated using coexistence assay. Our results showed that water hyacinth had disparate effects on the growth ofM~ aeruginosa (PCC7806) under different initial algal densities. Under lower initial algal density (OD650 = 0.10 and OD650 = 0.05), the algal growth was significantly inhibited by water hyacinth (inhibition ratio was 95.6% and 97.3%, respectively). While it was stimulated at higher initial algal densities (OD650 = 0.20). Water hyacinth inhibited the growth of algae mainly through its root system. Culture water from water hyacinth and aqueous methanol extracts from dry roots samples also showed inhibition effects on algal growth. The inhibition effects increased as the increase of crude extract concentration, suggest that water hyacinth may excrete inhibitory substances from root system and show allelopathic inhibitory potential to the growth ofM. aeruginosa.
基金This research supported by the Open Research Fund Program of Key Laboratory of Marine Drugs (Ocean University of China), the Ministry of Education of China also by NSFC for Talented Youths (No. 397250239) and the Project under Major State Basic Research of China (No. G1999012011)
文摘Growth inhibition effect of different concentration of distilled water extract and four polar organic solvent (methanol, acetone, ether and chloroform) extracts of Ulva pertusa on three typical red tide microalgae (Heterosigma akashiwo, Alexandrium tamarense and Prorocentrum micans) were inves- tigated. Liquid-liquid fractionation and HPLC analysis for methanol extract of U. pertusa were carried out. Growth of the three microalgae was significantly inhibited by the distilled water extract of U. pertusa at relatively higher concentration. However, the cells of the three microalgae did not die completely even at high concentration. Methanol extract of U. pertusa showed the highest growth inhibition on the three mi- croalgae, and all the cells of the three microalgae were killed at relatively high concentration. The other three organic solvent extracts of U. pertusa had no apparent effect on the three microalgae. The results of bioassays and HPLC analysis suggested that the inhibitory substances in U. pertusa to the microalgal growth had relatively high polarities. H. akashiwo was the most sensitive one while A. tamarense was the most tolerant one to the growth inhibitory substances.
文摘The purpose of this research is to investigate a biofilm system with trickling filter as a biological alternative process during low cost treatment connection with the possibility of reducing nutrients such as phosphorus. Given that nitrogen with phosphorus that are leading causes of algal bloom resulting in increased eutrophication or chemical nutrients are the basis of this document analysis. This increase in organisms results in less oxygen in water bodies and at times, slow decay leads many fresh water ponds, lakes and rivers. The process of eutrophication unfortunately tends to favor pollution and algae, which reduce the quality of the water. Kosovo has not a long tradition in the treatment of wastewater, especially in removing phosphorus, since the country has only a plant for wastewater treatment. The present plant is intended to protect the Klina river from eutrophication from wastewater discharged after treatment. This plant currently reduced phosphorus efficiently, but the goal of this paper is to increase the percentage of removal of phosphorus to 40% through trickling filters, presenting options for optimizing work on plant Skenderaj.
基金Supported by the Shanghai Municipal Science and Technology Commission(No.08DZ1203000)
文摘A hydrodynamic model and an aquatic ecology model of Dianshan Lake,Shanghai,were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D,which is an integrated modelling suite offered by Deltares. The simulated water elevation,current velocity,and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data,as well as simulated results. In 2008,the dominant algae in Dianshan Lake was Bacillariophyta from February to March,while it was Chlorophyta from April to May,and Cyanophyta from July to August. In summer,the biomass of Cyanophyta grew quickly,reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however,increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions,resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.
基金Supported by the National Natural Science Foundation of China (No. 31100339)the Special Program of China Postdoctoral Science Foundation (No. 2012T50494)the National Basic Research Program of China (973 Program) (No. 2008CB418104)
文摘We examined changes in biomass and species dominance of periphyton in response to nitrogen (N) and phosphorus (P) enrichment in 12 mesocosms representing eutrophic aquatic ecosystems. The 100-L mesocosms consisted of lake water and pond sediment, and N and P were applied weekly. Periphyton samples were taken to assess the biomass (as estimated by the concentration of chlorophyll a (chl a)) and to determine which species were dominant. The mean periphyton biomass (chl a) in the P-enriched treatment did not differ from that in the control group, but increased with N enrichment. Compared with that in the control group, the chl a concentration increased with N+P enrichment in the early stages of the experiment, but decreased in the later stages. The decline in periphyton biomass at the later stages of the experiment was due to limited light availability, which resulted from the increased phytoplankton density in the experiment. The nutrient enrichment treatments resulted in changes in the dominant algal species in the periphyton, suggesting that various algal species showed different responses to different nutrients. The results of this study have implications for nutrient management in aquatic ecosystems.
基金Supported by the National Natural Science Foundation of China(No.50904051)the Science and Technology Planning Project of Yantai,China(No.2010247)the Open Fund of Shandong Oriental Ocean Sci-Tech Co.,Ltd.(No.200803)
文摘Nanoparticles,or particles in size of 1-100 nm,are extensively used in the world in different applications.For instance,single-walled carbon nanotubes(SWCNTs) are commonly used in consumer products,such as biosensors,drug and vaccine delivery transporters,and novel biomaterials.Although nanoparticles do not cause safety concerns to consumers who use nanoparticle-containing products,these small particles are potentially harmful for workers who produce them in factories or in cases of discharge to aquatic ecosystems.SWCNTs do not have a natural analogue,so the effects on health of their disposal remain largely unknown.In this study,we evaluated the effects of SWCNTs on a population of the green microalga Chromochloris zofingiensis and the profile and production of pigments and fatty acids.The alga was incubated with SWCNTs for 6 days in 0(control),40,80,160,or 320 mg/L concentrations.SWCNTs showed both positive and negative effects on the growth of C.zofingiensis,with a biomass enhancement at low levels(40-160 mg/L) but inhibition at high levels(320 mg/L).By contrast,a decreased accumulation of fatty acids and pigments of C.zofingiensis was observed over the range of the tested concentrations.These results indicate that the markers on the inhibitive toxicity of SWCNTs are increasingly sensitive in the following order:biomass and fatty acids < primary carotenoids < chlorophylls < secondary carotenoids.C.zofingiensis is a suitable microalga for evaluating the ecotoxicological hazards of SWCNTs,especially in terms of pigmentation response.
文摘This study was conducted to screen the commercial herbicides for algae control in the aquarium. Three herbicides of ametryn, atrazine and metribuzine were tested at concentrations ranging from 0.625 to 10.00 ppm. It is found that ametryn was the most effective herbicide that inhibited algal growth. Ametryn concentration that caused 50% inhibition on algae growth after exposure for 21 days was 0.335 ppm. Survival rate of oruamental fish, Harlequin rasbora (Trigonostigma heteromorpha) and growth rate of aquatic plant (Elodea canadensis) exposed to 10 ppm ametryn were compared with those exposed to algaecide. The result showed that there was no significant difference in survival rate of Harlequin rasbora when exposed to ametryn, algaecide and dechlorinized tap water (control). However, growth rate of E. canadensis was lower after exposure of ametryn compared to those exposed to algaecide and tap water. These results suggest that ametryn has potential to be used as an algal inhibitor in aquarium.