An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the contr...A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the control and sensor system.An electric energy storage system (ESS) is required which possesses high power density with good cycle life.Ultracapacitors which exhibit high power density and cycle life are considered as energy storage devices.Simulations based on a specific voyage condition indicate that ESS with ultracapacitors has positive effects on reducing the output power demand of PEMFC and lightening the power system.Experimental results show that the state of charge (SOC) is related to the capacitance and resistance in ultracapacitor ESS.展开更多
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
基金Supported by the State Key Program of National Natural Science Foundation of China (No. 50835006)Science & Technology Support Planning Foundation of Tianjin (No. 09ZCKFGX03000)
文摘A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the control and sensor system.An electric energy storage system (ESS) is required which possesses high power density with good cycle life.Ultracapacitors which exhibit high power density and cycle life are considered as energy storage devices.Simulations based on a specific voyage condition indicate that ESS with ultracapacitors has positive effects on reducing the output power demand of PEMFC and lightening the power system.Experimental results show that the state of charge (SOC) is related to the capacitance and resistance in ultracapacitor ESS.