Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study...Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.展开更多
This paper introduces the recent highly significant activity of China Oilfield Services Ltd. (COSL) in the South China Sea, where COSL conducted pretrial drilling in June of 2008. The paper discusses some key resear...This paper introduces the recent highly significant activity of China Oilfield Services Ltd. (COSL) in the South China Sea, where COSL conducted pretrial drilling in June of 2008. The paper discusses some key research and new practices which led to the fabrication of related equipment which was evaluated in the trial. The market for deepwater drilling in the world has grown over the past 10 years but there are few drilling vessels or platforms suitable for drilling in deepwater or super deepwater. China needs equipment capable of deepwater drilling operations. COSL has some semisubmersible platforms, but they are only considered suitable for operations in water depths less than 475 m. An enabling technology, referred to as an artificial seabed, has been under development by COSL since 2004, and it applies the research results and experiences of many experts in deepwater drilling. COSL hopes this technology will allow drilling to depths of approximately 1 000-1 500m with its current platforms. The paper presents research progress and improvements in fabrication and necessary upgrades to equipment for extending deepwater drilling. The pretrial well was executed at a water depth of nearly 500m. COSL will drill the trial well around 2009 at the same location in the South China Sea.展开更多
In modern agriculture, accurate and effective measurements of soil water content lays foundation for promotion on precision irrigation technology and improvement on water use efficiency. The research reviewed soil moi...In modern agriculture, accurate and effective measurements of soil water content lays foundation for promotion on precision irrigation technology and improvement on water use efficiency. The research reviewed soil moisture indices at home and abroad and classified the indices into two categories in order to make prediction on soil moisture and take measures. Specifically, single indices included precipitation index, soil moisture index, and crop drought index and overall indices included supply/demand water index of crops, overall water index, PDSI, crop water shortage index. Soil moisture index was analyzed in terms of advantages and disadvantages,as well as adaptability in agriculture, providing references for relieving and predicting adverse effects on agriculture and formulating scientific policies.展开更多
[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore...[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore effective methods to decrease non-point pollution, we conducted analysis on hydrological process of rainfall runoff, interaction mechanism between the process and non-point pollutants, the influence on non-point pollution and hydrological model application in the research. [Result] It was proved that rainfall runoff was the main factor of non-point pollution. Control from source strengthened clearing and controlling of non-point pollutants on the ground. Growing plants in slope effectively reduced the scour and erosion of rainfall runoff on soil. The study became simple thanks for the hydrological process. [Conclusion] The research indicated that non-point pollution would be effectively reduced through control of rainfall runoff.展开更多
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit...Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.展开更多
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
基金Supported by National Natural Science Foundation of China(40972207)National S&T Major Project(2009ZX05039-004)~~
文摘Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.
文摘This paper introduces the recent highly significant activity of China Oilfield Services Ltd. (COSL) in the South China Sea, where COSL conducted pretrial drilling in June of 2008. The paper discusses some key research and new practices which led to the fabrication of related equipment which was evaluated in the trial. The market for deepwater drilling in the world has grown over the past 10 years but there are few drilling vessels or platforms suitable for drilling in deepwater or super deepwater. China needs equipment capable of deepwater drilling operations. COSL has some semisubmersible platforms, but they are only considered suitable for operations in water depths less than 475 m. An enabling technology, referred to as an artificial seabed, has been under development by COSL since 2004, and it applies the research results and experiences of many experts in deepwater drilling. COSL hopes this technology will allow drilling to depths of approximately 1 000-1 500m with its current platforms. The paper presents research progress and improvements in fabrication and necessary upgrades to equipment for extending deepwater drilling. The pretrial well was executed at a water depth of nearly 500m. COSL will drill the trial well around 2009 at the same location in the South China Sea.
基金Supported by Key Programs for Science and Technology Development(1501031102)~~
文摘In modern agriculture, accurate and effective measurements of soil water content lays foundation for promotion on precision irrigation technology and improvement on water use efficiency. The research reviewed soil moisture indices at home and abroad and classified the indices into two categories in order to make prediction on soil moisture and take measures. Specifically, single indices included precipitation index, soil moisture index, and crop drought index and overall indices included supply/demand water index of crops, overall water index, PDSI, crop water shortage index. Soil moisture index was analyzed in terms of advantages and disadvantages,as well as adaptability in agriculture, providing references for relieving and predicting adverse effects on agriculture and formulating scientific policies.
基金Supported by Major Special Fund of National Technology Program of China(2008ZX07421-002,2008ZX07421-004)the National High Technology Research and Development Program of China(2008AA06A412)Project Studied and Developed by Ministry of Housing and Urban-Rural Construction(2009-K7-4)~~
文摘[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore effective methods to decrease non-point pollution, we conducted analysis on hydrological process of rainfall runoff, interaction mechanism between the process and non-point pollutants, the influence on non-point pollution and hydrological model application in the research. [Result] It was proved that rainfall runoff was the main factor of non-point pollution. Control from source strengthened clearing and controlling of non-point pollutants on the ground. Growing plants in slope effectively reduced the scour and erosion of rainfall runoff on soil. The study became simple thanks for the hydrological process. [Conclusion] The research indicated that non-point pollution would be effectively reduced through control of rainfall runoff.
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.
基金financially supported by the National Natural Science Foundation of China (No. 52377222)the Natural Science Foundation of Hunan Province, China (Nos. 2023JJ20064, 2023JJ40759)。
文摘Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.