针对病斑在叶片上易形成封闭边缘的特性,采用色度学模型、边缘提取和形态学等方法对田间稻叶瘟病斑进行检测。利用2R-G色差分量提取图像上的图斑;采用Canny算法对2R-G色差分量图斑进行边缘检测,通过自定义边缘封闭修复模版对边缘进行修...针对病斑在叶片上易形成封闭边缘的特性,采用色度学模型、边缘提取和形态学等方法对田间稻叶瘟病斑进行检测。利用2R-G色差分量提取图像上的图斑;采用Canny算法对2R-G色差分量图斑进行边缘检测,通过自定义边缘封闭修复模版对边缘进行修复;利用HIS模型的H分量提取的叶片正常部位信息与修复后图像做掩膜运算,获得叶片范围内的病斑边界,然后,运用形态学运算剔除图斑中未闭合的边缘线;最后,采用归一化绿蓝差值指数(Normalized Difference Green and Blue Index,DNGBI)对封闭的非病斑区域进行阈值过滤,提取出稻瘟病病斑。试验结果表明:对叶瘟病斑的正确识别率可达到90.26%。展开更多
文摘针对病斑在叶片上易形成封闭边缘的特性,采用色度学模型、边缘提取和形态学等方法对田间稻叶瘟病斑进行检测。利用2R-G色差分量提取图像上的图斑;采用Canny算法对2R-G色差分量图斑进行边缘检测,通过自定义边缘封闭修复模版对边缘进行修复;利用HIS模型的H分量提取的叶片正常部位信息与修复后图像做掩膜运算,获得叶片范围内的病斑边界,然后,运用形态学运算剔除图斑中未闭合的边缘线;最后,采用归一化绿蓝差值指数(Normalized Difference Green and Blue Index,DNGBI)对封闭的非病斑区域进行阈值过滤,提取出稻瘟病病斑。试验结果表明:对叶瘟病斑的正确识别率可达到90.26%。