运用大型原状土柱在田间条件下比较了水稻基肥干耕施(干施)与湿耙施(湿施)对氮素损失与水稻氮素吸收的影响,试验设尿素干施、湿施与对照3个处理,同步测定了施肥后小区的氨挥发、淋洗以及水稻的吸氮量。结果表明:(1)干施法氨挥发显著低...运用大型原状土柱在田间条件下比较了水稻基肥干耕施(干施)与湿耙施(湿施)对氮素损失与水稻氮素吸收的影响,试验设尿素干施、湿施与对照3个处理,同步测定了施肥后小区的氨挥发、淋洗以及水稻的吸氮量。结果表明:(1)干施法氨挥发显著低于湿施法,模拟试验分别为40.1与68.8 kg hm-2,占施氮量的13.4%与22.9%,2004年的大田试验分别为19.2与26.2 kg hm-2,占施氮量的7.7%与10.4%;(2)而干施法的总氮(TN)淋洗量显著大于湿施法,分别为14.3与4.6 kg hm-2,占施氮量的4.8%与1.5%,氮的淋洗以NO3--N为主,占总量的73.7%~97.3%,两者的NH4+-N淋洗量差别很小;(3)与湿施法相比,干施法净减少氮肥损失19.0 kg hm-2,水稻吸氮量增加15.1 kg hm-2,氮肥利用率提高了5个百分点,产量略有提高,而土壤含氮量没有显著变化。因此,水稻基肥尿素干深施法是一项值得推广的施肥方法。展开更多
Rice (Oryza sativa) glutamate synthase (GOGAT,EC 1.4.1.14) enzymes have been proposed to have great potential for improving nitrogen use efficiency,but their functions in vivo and their effects on carbon and nitrogen ...Rice (Oryza sativa) glutamate synthase (GOGAT,EC 1.4.1.14) enzymes have been proposed to have great potential for improving nitrogen use efficiency,but their functions in vivo and their effects on carbon and nitrogen metabolism have not been systematically explored.In this research,we analyzed transcriptional profiles of rice GOGAT genes using a genome-wide microarray database,and investigated the effects of suppression of glutamate synthase genes on carbon and nitrogen metabolism using GOGAT co-suppressed rice plants.Transcriptional profiles showed that rice GOGAT genes were expressed differently in various tissues and organs,which suggested that they have different roles in vivo.Compared with the wild-type,tiller number,total shoot dry weight,and yield of GOGAT co-suppressed plants were significantly decreased.Physiological and biochemical studies showed that the contents of nitrate,several kinds of free amino acids,chlorophyll,sugars,sugar phosphates,and pyridine nucleotides were significantly decreased in leaves of GOGAT co-suppressed plants,but the contents of free ammonium,2-oxoglutarate,and isocitrate in leaves were increased.We conclude that GOGATs play essential roles in carbon and nitrogen metabolism,and that they are indispensable for efficient nitrogen assimilation in rice.展开更多
文摘运用大型原状土柱在田间条件下比较了水稻基肥干耕施(干施)与湿耙施(湿施)对氮素损失与水稻氮素吸收的影响,试验设尿素干施、湿施与对照3个处理,同步测定了施肥后小区的氨挥发、淋洗以及水稻的吸氮量。结果表明:(1)干施法氨挥发显著低于湿施法,模拟试验分别为40.1与68.8 kg hm-2,占施氮量的13.4%与22.9%,2004年的大田试验分别为19.2与26.2 kg hm-2,占施氮量的7.7%与10.4%;(2)而干施法的总氮(TN)淋洗量显著大于湿施法,分别为14.3与4.6 kg hm-2,占施氮量的4.8%与1.5%,氮的淋洗以NO3--N为主,占总量的73.7%~97.3%,两者的NH4+-N淋洗量差别很小;(3)与湿施法相比,干施法净减少氮肥损失19.0 kg hm-2,水稻吸氮量增加15.1 kg hm-2,氮肥利用率提高了5个百分点,产量略有提高,而土壤含氮量没有显著变化。因此,水稻基肥尿素干深施法是一项值得推广的施肥方法。
基金supported by the National High Technology Research and Development Program of China (Grant No. 2010AA101802)Transgenic Project (Grant No. 2008ZX08001-005)
文摘Rice (Oryza sativa) glutamate synthase (GOGAT,EC 1.4.1.14) enzymes have been proposed to have great potential for improving nitrogen use efficiency,but their functions in vivo and their effects on carbon and nitrogen metabolism have not been systematically explored.In this research,we analyzed transcriptional profiles of rice GOGAT genes using a genome-wide microarray database,and investigated the effects of suppression of glutamate synthase genes on carbon and nitrogen metabolism using GOGAT co-suppressed rice plants.Transcriptional profiles showed that rice GOGAT genes were expressed differently in various tissues and organs,which suggested that they have different roles in vivo.Compared with the wild-type,tiller number,total shoot dry weight,and yield of GOGAT co-suppressed plants were significantly decreased.Physiological and biochemical studies showed that the contents of nitrate,several kinds of free amino acids,chlorophyll,sugars,sugar phosphates,and pyridine nucleotides were significantly decreased in leaves of GOGAT co-suppressed plants,but the contents of free ammonium,2-oxoglutarate,and isocitrate in leaves were increased.We conclude that GOGATs play essential roles in carbon and nitrogen metabolism,and that they are indispensable for efficient nitrogen assimilation in rice.