A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black backg...A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60008001) and the Natural Science Foundation of Zhe-jiang Province (No. 300297), China
文摘A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background.