This paper focused on investigating high-efficient reductants of recovering selenium and tellurium from degoldizedsolution of copper anode slimes.Firstly,the effect of various reductants on recovery rates of Se and Te...This paper focused on investigating high-efficient reductants of recovering selenium and tellurium from degoldizedsolution of copper anode slimes.Firstly,the effect of various reductants on recovery rates of Se and Te was investigated based onthermodynamic analysis of various metallic ions in degoldized solution.Secondly,the single factor experiments were made toinvestigate the effect of the process parameters on recovering Se and Te with hydrazine hydrate.Finally,the hydroxylaminehydrochloride was added to intensify the extraction efficiencies of Se and Te.The results indicated that hydrazine hydrate was themost suitable reductant,and the recovery rates of Se and Te are71.23%and76.50%,respectively;the recovery rates of Se and Tewere92.07%and97.81%,respectively,under the optimal process conditions of hydrazine hydrate dosage of0.2133mol/L,H+concentration of4.305mol/L,reaction temperature of85°C and reaction time of5h;the recovery rate of Se was97.59%,and that Tereached up to100%when hydroxylamine hydrochloride dosage was1.5116mol/L.展开更多
An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-uns...An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-unsaturated carbonyl compounds. The reactions were carried out in water in the presence of potassium phosphate within 2-4 h to afford the expected products in excellent yields.展开更多
Under microwave irradiation, with dimethypyridine-2,6-dicarboxylate and hydrazine hydrate as raw materials, 2,6-pyridine dicarboxylic hydrazine was produced. At the same time, the influence factors of production rate,...Under microwave irradiation, with dimethypyridine-2,6-dicarboxylate and hydrazine hydrate as raw materials, 2,6-pyridine dicarboxylic hydrazine was produced. At the same time, the influence factors of production rate, such as microwave radiation time, reaction power, the amount of dimethypyridine-2,6-dicarboxylate and hydrazine hydrate was further explored. Through the orthogonal experiments, better technology conditions were found which make the synthetic process turn from the new type of microwave technology.展开更多
Finding inexpensive electrodes with high activity and stability is key to realize the practical application of fuel cells. Here, we report the fabrication of three-dimensional (3D) porous nickel nanoflower (3D-PNNF...Finding inexpensive electrodes with high activity and stability is key to realize the practical application of fuel cells. Here, we report the fabrication of three-dimensional (3D) porous nickel nanoflower (3D-PNNF) electrodes via an in situ reduction method. The 3D-PNNF electrodes have a high surface area, show tight binding to the electroconductive substrate, and most importantly, have superaerophobic (bubble repellent) surfaces. Therefore, the electrocatalytic hydrazine oxidation performance of the 3D-PNNF electrodes was much higher than that of commercial Pt/C catalysts because of its ultra-weak gas-bubble adhesion and ultra-fast gas-bubble release. Furthermore, the 3D-PNNF electrodes showed ultra-high stability even under a high current density (260 mA/cm^2), which makes it promising for practical applications. In addition, the construction of superaerophobic nanostructures could also be beneficial for other gas evolution processes (e.g., hydrogen evolution reaction).展开更多
基金Project(201407300993)supported by Xinjiang Autonomous Region Science and Technology Support Project,China
文摘This paper focused on investigating high-efficient reductants of recovering selenium and tellurium from degoldizedsolution of copper anode slimes.Firstly,the effect of various reductants on recovery rates of Se and Te was investigated based onthermodynamic analysis of various metallic ions in degoldized solution.Secondly,the single factor experiments were made toinvestigate the effect of the process parameters on recovering Se and Te with hydrazine hydrate.Finally,the hydroxylaminehydrochloride was added to intensify the extraction efficiencies of Se and Te.The results indicated that hydrazine hydrate was themost suitable reductant,and the recovery rates of Se and Te are71.23%and76.50%,respectively;the recovery rates of Se and Tewere92.07%and97.81%,respectively,under the optimal process conditions of hydrazine hydrate dosage of0.2133mol/L,H+concentration of4.305mol/L,reaction temperature of85°C and reaction time of5h;the recovery rate of Se was97.59%,and that Tereached up to100%when hydroxylamine hydrochloride dosage was1.5116mol/L.
基金Natural Science Foundation of China (Grant No.20672009)the Major State Basic Research Development Program(Grant No.2004CB719900).
文摘An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-unsaturated carbonyl compounds. The reactions were carried out in water in the presence of potassium phosphate within 2-4 h to afford the expected products in excellent yields.
文摘Under microwave irradiation, with dimethypyridine-2,6-dicarboxylate and hydrazine hydrate as raw materials, 2,6-pyridine dicarboxylic hydrazine was produced. At the same time, the influence factors of production rate, such as microwave radiation time, reaction power, the amount of dimethypyridine-2,6-dicarboxylate and hydrazine hydrate was further explored. Through the orthogonal experiments, better technology conditions were found which make the synthetic process turn from the new type of microwave technology.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21271018 and 21125101), the National Basic Research Program of China (No. 2011CBA00503), the National High-tech R&D Program of China (No. 2012AA03A609) and the Program for Changjiang Scholars and Innovative Research Team in University.
文摘Finding inexpensive electrodes with high activity and stability is key to realize the practical application of fuel cells. Here, we report the fabrication of three-dimensional (3D) porous nickel nanoflower (3D-PNNF) electrodes via an in situ reduction method. The 3D-PNNF electrodes have a high surface area, show tight binding to the electroconductive substrate, and most importantly, have superaerophobic (bubble repellent) surfaces. Therefore, the electrocatalytic hydrazine oxidation performance of the 3D-PNNF electrodes was much higher than that of commercial Pt/C catalysts because of its ultra-weak gas-bubble adhesion and ultra-fast gas-bubble release. Furthermore, the 3D-PNNF electrodes showed ultra-high stability even under a high current density (260 mA/cm^2), which makes it promising for practical applications. In addition, the construction of superaerophobic nanostructures could also be beneficial for other gas evolution processes (e.g., hydrogen evolution reaction).