Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model i...Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.展开更多
Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breake...Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breakers, de- signed to reduce energy consumption, is analyzed on the basis of the operating principle and energy loss of the current distribution valve. The new distribution valve adopts a cone valve and the optimization technique of unequal open de- gree for the valve port. Theoretical calculations and analyses have proven that the new distribution valve can reduce en- ergy loss by 9.0127J, or energy consumption by 31%, during an impact cycle and the efficiency of the hydraulic breaker can be raised by 4.5%. It has the following characteristics: little leakage, little pressure loss and low energy consump- tion.展开更多
Development of a reactive nanocement is a new approach to improve the physical and chemical properties of construction materials. However, due to the decreased size of cement particles, beam damage during transmission...Development of a reactive nanocement is a new approach to improve the physical and chemical properties of construction materials. However, due to the decreased size of cement particles, beam damage during transmission electron microscope (TEM) observation becomes more severe than in conventional cement. In this work, irradiation damage to nano-C2S (dicalcium silicate) is observed and studied by in-situ evolution of diffraction patterns (DP), high resolution TEM (HRTEM), and electron energy-loss spectroscopy (EELS). The results show that the damage to nano-C2S occurs through a decomposition reaction. Nano-C2S is first amorphized, and then re-crystallized into CaO nano-crystals with average size of 7 nm surrounded by an amorphous matrix of Si and SiO2. During this process, C2S particles exhibit volume shrinkage. The damage energy causing the reaction was analyzed and electron-electron inelastic scattering produced radiolysis and heat, leading to the observed phenomena.展开更多
基金Supported by the National Science Fund for Distinguished Young Scholars (No 40425015)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Nos KZCX1-YW-12 and KZCX2-YW-201)
文摘Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations.The model is first tested by the additional experimental data,and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated.Then,the model's breaking index is replaced and tested.The new breaking index,which is optimized from the several breaking indices,is not sensitive to the spatial grid length and includes the bottom slopes.Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking.Finally,the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar.Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height(normalized by water depth) dominate the fractional energy losses.It is also found that the bar slope(limited to gentle slopes that less than 1:10) and the dimensionless bar length(normalized by incident wave length) have negligible effects on the fractional energy losses.
基金Project 50374071 supported by National Natural Science Foundation of China
文摘Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breakers, de- signed to reduce energy consumption, is analyzed on the basis of the operating principle and energy loss of the current distribution valve. The new distribution valve adopts a cone valve and the optimization technique of unequal open de- gree for the valve port. Theoretical calculations and analyses have proven that the new distribution valve can reduce en- ergy loss by 9.0127J, or energy consumption by 31%, during an impact cycle and the efficiency of the hydraulic breaker can be raised by 4.5%. It has the following characteristics: little leakage, little pressure loss and low energy consump- tion.
文摘Development of a reactive nanocement is a new approach to improve the physical and chemical properties of construction materials. However, due to the decreased size of cement particles, beam damage during transmission electron microscope (TEM) observation becomes more severe than in conventional cement. In this work, irradiation damage to nano-C2S (dicalcium silicate) is observed and studied by in-situ evolution of diffraction patterns (DP), high resolution TEM (HRTEM), and electron energy-loss spectroscopy (EELS). The results show that the damage to nano-C2S occurs through a decomposition reaction. Nano-C2S is first amorphized, and then re-crystallized into CaO nano-crystals with average size of 7 nm surrounded by an amorphous matrix of Si and SiO2. During this process, C2S particles exhibit volume shrinkage. The damage energy causing the reaction was analyzed and electron-electron inelastic scattering produced radiolysis and heat, leading to the observed phenomena.