The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a cor...The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.展开更多
Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L ...Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L NaOH-HCI pretreated substrate are adherent, but there are cracks for the sample with 33% Ta. X-ray photoelectron spectroscopy results show that Ti and Ta exist as TiP2 and Ta205 in the film, and A1 element is not detectable. X-ray diffraction and Raman scattering analyses reveal that the addition of Ta decreases crystallization of the films. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the coating samples markedly improve the corrosion resistance compared with the polished sample. The addition of Ta impedes UV light-induced hydrophilic conversion of the coating samples. The sample with 20% Ta has enough film integrity and hydrophilic conversion rate, and is expected to possess good biological properties.展开更多
Composite coatings consisting of carbon and polytetrafluoroethylene(PTFE) were prepared on Ti alloy substrate by a simple two-step process of hydrothermal and impregnation. The morphology, composition, hydrophobic and...Composite coatings consisting of carbon and polytetrafluoroethylene(PTFE) were prepared on Ti alloy substrate by a simple two-step process of hydrothermal and impregnation. The morphology, composition, hydrophobic and corrosion properties of the composite coatings were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), water contact angle method, X-ray photoelectron spectroscopy(XPS) and electrochemical technique, respectively. The effect of PTFE content on the corrosion properties of the composite coatings was studied. It is found that the composite coating film exhibits a full coverage with uniformly distributed PTFE when 0.1 mol/L of glucose is used as carbon source and 20 wt.% PTFE suspension as impregnating solution. The coating with 20 wt.% PTFE has a good bonding strength with Ti plate and exhibits excellent hydrophobic property with a water contact angle of 142.3° as well as superior corrosion resistance with corrosion current density as low as 0.0045 μA/cm^2. With regard to its excellent hydrophobicity and corrosion resistance, the carbon-PTFE composite coating may find potential application in automobiles and metal corrosion industries.展开更多
The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed ...The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed by scanning electron microscopy(SEM) in order to determine the optimum corrosion protection potential to overcome pitting,corrosion,stress corrosion cracking(SCC),and hydrogen embrittlement in sea water.An optimum protection potential range of-1.3 V to-0.7 V was determined under the application of an impressed current cathodic protection(ICCP) system.The low current densities were shown in the range of-1.3 V to-0.7 V in the electrochemical experiments and good specimen surface morphologies were observed after potentiostatic experiment.展开更多
文摘The study investigated the application of radiofrequency(RF)-sputtered TiO2 coatings at various temperatures to enhance the hydrophobicity and corrosion resistance of Al6061 alloy.The research aimed to establish a correlation between the coating process and the resulting surface properties.Surface roughness and wettability were quantified with a surface profilometer and goniometer.Additionally,chemical boiling and salt spray corrosion tests were conducted to evaluate any topographical changes during these procedures.The analysis further involved the use of field-emission scanning electron microscopy(FESEM),energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD)techniques to characterize the deposited coatings.The findings indicated that the TiO2 coating applied at 500℃exhibited the highest water contact angle and superior corrosion resistance compared to other temperatures.Surface characterization confirmed that this specific TiO_(2) coating at 500℃ effectively delays corrosion due to its hydrophobic behavior,making it durable for industrial applications.
基金Project(xjj2011096)supported by the Fundamental Research Fund for the Central Universities,ChinaProjects(50901058,51374174)supported by the National Natural Science Foundation of China
文摘Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L NaOH-HCI pretreated substrate are adherent, but there are cracks for the sample with 33% Ta. X-ray photoelectron spectroscopy results show that Ti and Ta exist as TiP2 and Ta205 in the film, and A1 element is not detectable. X-ray diffraction and Raman scattering analyses reveal that the addition of Ta decreases crystallization of the films. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the coating samples markedly improve the corrosion resistance compared with the polished sample. The addition of Ta impedes UV light-induced hydrophilic conversion of the coating samples. The sample with 20% Ta has enough film integrity and hydrophilic conversion rate, and is expected to possess good biological properties.
基金Project(2018YFB1502500) supported by the National Key Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China+1 种基金Projects(21506258,51774127) supported by the National Natural Science Foundation of ChinaProject(2019RS2067) supported by the Science and Technology Planning Project of Hunan Province,China
文摘Composite coatings consisting of carbon and polytetrafluoroethylene(PTFE) were prepared on Ti alloy substrate by a simple two-step process of hydrothermal and impregnation. The morphology, composition, hydrophobic and corrosion properties of the composite coatings were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), water contact angle method, X-ray photoelectron spectroscopy(XPS) and electrochemical technique, respectively. The effect of PTFE content on the corrosion properties of the composite coatings was studied. It is found that the composite coating film exhibits a full coverage with uniformly distributed PTFE when 0.1 mol/L of glucose is used as carbon source and 20 wt.% PTFE suspension as impregnating solution. The coating with 20 wt.% PTFE has a good bonding strength with Ti plate and exhibits excellent hydrophobic property with a water contact angle of 142.3° as well as superior corrosion resistance with corrosion current density as low as 0.0045 μA/cm^2. With regard to its excellent hydrophobicity and corrosion resistance, the carbon-PTFE composite coating may find potential application in automobiles and metal corrosion industries.
文摘The optimum corrosion protection potentials were examined for 5052-O Al alloy,which is mainly used in ships.Various electrochemical experiments were carried out and the surface morphologies of specimens were observed by scanning electron microscopy(SEM) in order to determine the optimum corrosion protection potential to overcome pitting,corrosion,stress corrosion cracking(SCC),and hydrogen embrittlement in sea water.An optimum protection potential range of-1.3 V to-0.7 V was determined under the application of an impressed current cathodic protection(ICCP) system.The low current densities were shown in the range of-1.3 V to-0.7 V in the electrochemical experiments and good specimen surface morphologies were observed after potentiostatic experiment.