Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1...Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.展开更多
It is generally believed that intelligent management for sewage treatment plants(STPs) is essential to the sustainable engineering of future smart cities.The core of management lies in the precise prediction of daily ...It is generally believed that intelligent management for sewage treatment plants(STPs) is essential to the sustainable engineering of future smart cities.The core of management lies in the precise prediction of daily volumes of sewage.The generation of sewage is the result of multiple factors from the whole social system.Characterized by strong process abstraction ability,data mining techniques have been viewed as promising prediction methods to realize intelligent STP management.However,existing data mining-based methods for this purpose just focus on a single factor such as an economical or meteorological factor and ignore their collaborative effects.To address this challenge,a deep learning-based intelligent management mechanism for STPs is proposed,to predict business volume.Specifically,the grey relation algorithm(GRA) and gated recursive unit network(GRU) are combined into a prediction model(GRAGRU).The GRA is utilized to select the factors that have a significant impact on the sewage business volume,and the GRU is set up to output the prediction results.We conducted a large number of experiments to verify the efficiency of the proposed GRA-GRU model.展开更多
Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton,...Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributionsto absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab- lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re- flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.展开更多
We examined regional empirical equations for estimating the surface concentration of particulate organic carbon (POC) in the South China Sea. These algorithms are based on the direct relationships between POC and th...We examined regional empirical equations for estimating the surface concentration of particulate organic carbon (POC) in the South China Sea. These algorithms are based on the direct relationships between POC and the blue-to-green band ratios of spectral remotely sensed reflectance, Rrs(λB)/Rrs(555). The best error statistics among the considered formulas were produced using the power function POC (rag/ m3)=262.173 [Rrs(443)/Rrs(555)]^-0.940. This formula resulted in a small mean bias of approximately -2.52%, a normalized root mean square error of 31.1%, and a determination coefficient of 0.91. This regional empirical equation is different to the results of similar studies in other oceanic regions. Our validation results suggest that our regional empirical formula performs better than the global algorithm, in the South China Sea. The feasibility of this band ratio algorithm is primarily due to the relationship between POC and the green-to- blue ratio of the particle absorption coefficient. Colored dissolved organic matter can be an important source of noise in the band ratio formula. Finally, we applied the empirical algorithm to investigate POC changes in the southwest of Luzon Strait.展开更多
文摘Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.
基金Project(KJZD-M202000801) supported by the Major Project of Chongqing Municipal Education Commission,ChinaProject(2016YFE0205600) supported by the National Key Research&Development Program of China+1 种基金Project(CXQT19023) supported by the Chongqing University Innovation Group Project,ChinaProjects(KFJJ2018069,1853061,1856033) supported by the Key Platform Opening Project of Chongqing Technology and Business University,China。
文摘It is generally believed that intelligent management for sewage treatment plants(STPs) is essential to the sustainable engineering of future smart cities.The core of management lies in the precise prediction of daily volumes of sewage.The generation of sewage is the result of multiple factors from the whole social system.Characterized by strong process abstraction ability,data mining techniques have been viewed as promising prediction methods to realize intelligent STP management.However,existing data mining-based methods for this purpose just focus on a single factor such as an economical or meteorological factor and ignore their collaborative effects.To address this challenge,a deep learning-based intelligent management mechanism for STPs is proposed,to predict business volume.Specifically,the grey relation algorithm(GRA) and gated recursive unit network(GRU) are combined into a prediction model(GRAGRU).The GRA is utilized to select the factors that have a significant impact on the sewage business volume,and the GRU is set up to output the prediction results.We conducted a large number of experiments to verify the efficiency of the proposed GRA-GRU model.
基金jointly supported by the International Cooperation and Exchange Projects of the National Natural Science Foundation of China (No.61361163001)the National Key Scientific Instrument and Equipment Development Projects of National Natural Science Foundation of China (No.41527901)the National High-Tech R&D Program (863 Program) (No.2013AA09A505)
文摘Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributionsto absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab- lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re- flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
基金Supported by the National Natural Science Foundation of China(Nos.41376042,41176035)the Natural Science for Youth Foundation(No.41206029)+2 种基金the Youth Foundation by South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.SQ201102)the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF201302)the Open Project Program of State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTOZZ1201)
文摘We examined regional empirical equations for estimating the surface concentration of particulate organic carbon (POC) in the South China Sea. These algorithms are based on the direct relationships between POC and the blue-to-green band ratios of spectral remotely sensed reflectance, Rrs(λB)/Rrs(555). The best error statistics among the considered formulas were produced using the power function POC (rag/ m3)=262.173 [Rrs(443)/Rrs(555)]^-0.940. This formula resulted in a small mean bias of approximately -2.52%, a normalized root mean square error of 31.1%, and a determination coefficient of 0.91. This regional empirical equation is different to the results of similar studies in other oceanic regions. Our validation results suggest that our regional empirical formula performs better than the global algorithm, in the South China Sea. The feasibility of this band ratio algorithm is primarily due to the relationship between POC and the green-to- blue ratio of the particle absorption coefficient. Colored dissolved organic matter can be an important source of noise in the band ratio formula. Finally, we applied the empirical algorithm to investigate POC changes in the southwest of Luzon Strait.