期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
如何根据天然饵料基础估算鱼产力 被引量:1
1
作者 陈卫境 《水产科技情报》 2002年第4期192-192,共1页
关键词 水草生物量 黑白瓶 天然饵料基础 估算 鱼产力
下载PDF
Comparison of Soil Respiration in Two Grass-Dominated Communitiesin the Xil in River Basin: Correlations and Controls 被引量:5
2
作者 张焱 李凌浩 +5 位作者 王艳芬 唐芳 陈全胜 杨晶 袁志友 董云社 《Acta Botanica Sinica》 CSCD 2003年第9期1024-1029,共6页
A comparative study of soil respiration was conducted between in a semi-arid steppe community and in a wet meadow community in the Xilin River Basin of Nei Mongol. The seasonal pattern, the climatic controls, and the ... A comparative study of soil respiration was conducted between in a semi-arid steppe community and in a wet meadow community in the Xilin River Basin of Nei Mongol. The seasonal pattern, the climatic controls, and the correlations of soil respiration with plant biomass components, were examined for each community. The main results are reported as follows: (1) The seasonal changes in soil respiration in the two communities had similar dynamic patterns (both being of two peaks), ranging from 312.8 to 1738.9 mg C(.)m(-2).s(-1) and from 354.6 to 2235.6 Mg C.m(-2).s(-1) in the growing season for the steppe plot and the meadow plot respectively. The soil respiration rate of the meadow plot was distinctly higher than that of the steppe plot, with the daily averages being 1349.6 mg C-m(-2).s(-1) and 785.9 mg C-m(-2).s(-1) respectively. (2) The correlation between soil respiration rate and soil moisture was much more significant than with temperature for the steppe community, and being on the contrary for the meadow community, reflecting the different effects of the two climatic factors in different habitats. Based on these regressive relations, the total CO2 efflux rate in the growing season in 2001 was estimated as 142.4 g C/m(2) in the steppe plot, and 236.1 g C/m(2) in the meadow plot. (3) There was no evident relation between the total canopy biomass and CO2 evolution rate, but a significant power function relation between the live canopy biomass and CO2 evolution rate in the meadow plot was detected. In the steppe plot, there existed only a weak relation between soil respiration and either live or total canopy biomass. 展开更多
关键词 soil respiration temperature soil moisture canopy biomass STEPPE MEADOW
下载PDF
Biomass Allocation Patterns of Alpine Grassland Species and Functional Groups along a Precipitation Gradient on the Northern Tibetan Plateau 被引量:8
3
作者 WU Jian-shuang SHEN Zhen-xi +1 位作者 ZHANG Xian-zhou SHI Pei-li 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1097-1108,共12页
Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to ... Variations in the fractions of biomass allocated to functional components are widely considered as plant responses to resource availability for grassland plants. Observations indicated shoots isometrically relates to roots at the community level but allometrically at the species level in Tibetan alpine grasslands. These differences may result from the specific complementarity of functional groups between functional components, such as leaf, root, stem and reproductive organ. To test the component complementary responses to regional moisture variation, we conducted a multi-site transect survey to measure plant individual size and component biomass fractions of common species belonging to the functional groups: forbs, grasses, legumes and sedges on the Northern Tibetan Plateau in peak growing season in 2010. Along the mean annual precipitation (MAP) gradient, we sampled 7o species, in which 2o are in alpine meadows, 20 in alpine steppes, 15 in alpine desert-steppes and 15 in alpine deserts, respectively. Our results showed that the size of alpine plants is small with individual biomass mostly lower than 1.0 g. Plants keep relative conservative component individual responses moisture functional fractions across alpine grasslands at the level. However, the complementary between functional components to variations specifically differ among groups. These results indicate that functional group diversity may be an effective tool for scaling biomass allocation patterns from individual up to community level. Therefore, it is necessary andvaluable to perform intensive and systematic studies on identification and differentiation the influences of compositional changes in functional groups on ecosystem primary services and processes. 展开更多
关键词 Biomass fractions Complementaryresponse Functional components Functional groups Changtang Plateau
下载PDF
Drought and N Addition in the Greenhouse Experiment: Blue Grama and Western Wheatgrass
4
作者 Zhen Wang Michael Peter Schellenberg 《Journal of Agricultural Science and Technology(B)》 2012年第1期29-37,共9页
Understanding how the growth of two key native grass species of the Northern Great Plains (Western wheatgrass and blue grama) may be affected under drought and nitrogen deficiency is essential for future management ... Understanding how the growth of two key native grass species of the Northern Great Plains (Western wheatgrass and blue grama) may be affected under drought and nitrogen deficiency is essential for future management of these grasslands. The random complete block experimental design greenhouse study examined the effects of water and N addition on above-ground and below-ground harvested biomass of C3 (Western wheatgrass, WWG) and C4 (blue grama, BG) grass species for the purpose of gaining better understanding of drought responses for these two species. Compared with well-watered treatment (field capacity), two water limited treatments (70% and 85% field capacity) decreased plant above- and below-ground biomass (WWG and BG). For two N treatments (no N added, addition of 100 mg N kg^-1soil), addition of N significantly improved plant above- and below-ground biomass of WWG and BG under water field capacity. Both above- and below-ground biomass of the two grass species increased linearly with increasing water supplied, but above- and below-ground biomass of WWG was always lower than BG for the same treatments (water or N addition). The results demonstrated that BG seedlings had better adaptation than WWG to deal with the imposed drought or N deficient conditions. 展开更多
关键词 Water treatment N addition above- and below-ground biomass GRASS GREENHOUSE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部