Through investigation and analysis on typical system of pumped-storage stations built in China, this paper approaches the investment andfinancing policies, electricity pricing policies and management modes for suchsta...Through investigation and analysis on typical system of pumped-storage stations built in China, this paper approaches the investment andfinancing policies, electricity pricing policies and management modes for suchstations. In order to find out the actual operation situations, eight pumped-storage stations in five provinces (municipality) were investigated, and analysesand calculations were carried out on their investments, benefits, capabilities ofloan-repaying etc. During the investigation and study, the types and the installedcapacities of the stations were paid close attention to, so they were made morerepresentative to reflect the present situation of pumped-storage stations inrespect of construction and operation.展开更多
This paper summarizes the development of hydro-projects in China,blended with an international perspective.It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing,a...This paper summarizes the development of hydro-projects in China,blended with an international perspective.It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing,and covers the theorization of uneven non-equilibrium sediment transport,inter-basin water diversion,giant hydro-generator units,pumped storage power stations,underground caverns,ecological protection,and so on.展开更多
Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to...It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.展开更多
Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in ...Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.展开更多
To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power...To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.展开更多
Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power ...Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.展开更多
An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electri...The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.展开更多
In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted valu...In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted value of the windfarm. When the measured windfarm output is larger than the predicted value, the system is pumping up water with surplus power. When the windfarm output is smaller than the predicted value, the system is filling up lack power by hydro generator. Also, since hydro generator works with a start-up delay time, output shortage occurs at this time. To improve output shortage at the time, we estimate the time below the predicted value by a statistical model. As the result, the system succeeded in stabilizing the power and improving the start-up delay time of the hydro generator.展开更多
The operation parameters (vibration, shaft displacement and pressure fluctuation) of No. 1 Francis reversible unit of Baoquan pumped-storage power station were measured on site in the no-load mode at net heads of 51...The operation parameters (vibration, shaft displacement and pressure fluctuation) of No. 1 Francis reversible unit of Baoquan pumped-storage power station were measured on site in the no-load mode at net heads of 518.04, 522.01 and 530.38 m, re- spectively. The rotational speed fluctuations in the no-load mode at three net heads were beyond synchronization requirement with obvious S-shaped characteristic, and misaligned guide vanes (MGV) had to be put into use for synchronization. Further analysis demonstrated that the rotating frequency signal was generally dominant in vibration and shaft displacement mixing signal in the no-load mode, while the frequency domain was wide without an obvious main frequency in pressure fluctuation mixing signal. Besides, the SSTκ-ω turbulence model was adopted to simulate the four quadrant characteristic curves of Baoquan model pump-turbine at three gate openings, and the relative error between simulation results and model test data was within ±6%, indicating that the simulation method in this paper is feasible and S-shaped characteristic of the pump-turbine can be simulated with CFD method.展开更多
文摘Through investigation and analysis on typical system of pumped-storage stations built in China, this paper approaches the investment andfinancing policies, electricity pricing policies and management modes for suchstations. In order to find out the actual operation situations, eight pumped-storage stations in five provinces (municipality) were investigated, and analysesand calculations were carried out on their investments, benefits, capabilities ofloan-repaying etc. During the investigation and study, the types and the installedcapacities of the stations were paid close attention to, so they were made morerepresentative to reflect the present situation of pumped-storage stations inrespect of construction and operation.
文摘This paper summarizes the development of hydro-projects in China,blended with an international perspective.It expounds major technical progress toward ensuring the safe construction of high dams and river harnessing,and covers the theorization of uneven non-equilibrium sediment transport,inter-basin water diversion,giant hydro-generator units,pumped storage power stations,underground caverns,ecological protection,and so on.
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
文摘It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.
文摘Usually the water head of the pumped storage hydro-plant is high, generally up to 400-500 m, therefore the rock mass under the high-pressure bifurcation pipe have to bear as high as millions Pascal water pressure, in according with the requirements of high water head pumped storage hydro-plant should be 1.2 times of the water head special high-pressure packer permeability test compared with normal to test the permeability of rock and rock cleavage pressure value. The test results on the choice of design options often play a decisive role. Based on the engineering practice, the authors studied the drillhole high-pressure packer permeability test in the pumped storage hydro-plant's underground powerhouse, by the analysis of test results, this article offers a demonstration of the deformation of rock fracture witch under building in the condition of high-pressure water head, it provides a more detailed engineering geological background.
基金National Natural Science Foundation of China(No.61663019)
文摘To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.
文摘Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
文摘The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.
文摘In this paper, a method of stabilizing electric power by a system which is a combination of wind power generation and pumped storage power generation is proposed. The system operates based on the output predicted value of the windfarm. When the measured windfarm output is larger than the predicted value, the system is pumping up water with surplus power. When the windfarm output is smaller than the predicted value, the system is filling up lack power by hydro generator. Also, since hydro generator works with a start-up delay time, output shortage occurs at this time. To improve output shortage at the time, we estimate the time below the predicted value by a statistical model. As the result, the system succeeded in stabilizing the power and improving the start-up delay time of the hydro generator.
文摘The operation parameters (vibration, shaft displacement and pressure fluctuation) of No. 1 Francis reversible unit of Baoquan pumped-storage power station were measured on site in the no-load mode at net heads of 518.04, 522.01 and 530.38 m, re- spectively. The rotational speed fluctuations in the no-load mode at three net heads were beyond synchronization requirement with obvious S-shaped characteristic, and misaligned guide vanes (MGV) had to be put into use for synchronization. Further analysis demonstrated that the rotating frequency signal was generally dominant in vibration and shaft displacement mixing signal in the no-load mode, while the frequency domain was wide without an obvious main frequency in pressure fluctuation mixing signal. Besides, the SSTκ-ω turbulence model was adopted to simulate the four quadrant characteristic curves of Baoquan model pump-turbine at three gate openings, and the relative error between simulation results and model test data was within ±6%, indicating that the simulation method in this paper is feasible and S-shaped characteristic of the pump-turbine can be simulated with CFD method.