期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
中国水蚀土壤抗剪强度研究 被引量:32
1
作者 张爱国 李锐 杨勤科 《水土保持通报》 CSCD 北大核心 2001年第3期5-9,共5页
利用野外测试数据、土壤样品的室内理化分析数据和参考文献数据 ,对水蚀区范围内水土流失过程中的土壤抗剪强度进行了初步研究 ,建立了中国水土流失土壤抗剪强度的回归模型 ,总结出水蚀区范围内水蚀过程中有关土壤抗剪强度的 3条结论 :... 利用野外测试数据、土壤样品的室内理化分析数据和参考文献数据 ,对水蚀区范围内水土流失过程中的土壤抗剪强度进行了初步研究 ,建立了中国水土流失土壤抗剪强度的回归模型 ,总结出水蚀区范围内水蚀过程中有关土壤抗剪强度的 3条结论 :影响水土流失过程中土壤抗剪强度的主导因素是容重、粉 /黏、土壤含水量、土壤有机质含量 ;抗剪强度随土壤类型发生有规律的变化 ;抗剪强度在中国水蚀区范围内有较明显的空间分异规律 (包括水平分异规律和垂直剖面构型规律 ) 展开更多
关键词 测试数据 抗剪强度 回归模型 空间分异 水蚀土壤 土壤含水量 土壤力学
下载PDF
陕西省水蚀土壤因子指标插值方法比较研究 被引量:2
2
作者 庞国伟 杨勤科 +1 位作者 张爱国 李锐 《水土保持通报》 CSCD 北大核心 2009年第2期176-181,215+182,共8页
基于地统计学原理和半变异理论,采用地理信息系统技术定量研究了陕西省水蚀土壤因子指标的空间变异特征。分析比较了反距离权重法、样条函数法与普通克吕格法对陕西省土壤因子指标空间插值的精度。结果表明,研究区土壤抗冲系数具有中等... 基于地统计学原理和半变异理论,采用地理信息系统技术定量研究了陕西省水蚀土壤因子指标的空间变异特征。分析比较了反距离权重法、样条函数法与普通克吕格法对陕西省土壤因子指标空间插值的精度。结果表明,研究区土壤抗冲系数具有中等强度的空间相关性,块金系数为32.29%,而稳渗速率、崩解速率、抗剪强度均表现为强烈的空间相关性,块金系数分别为13.19%,11.61%和12.98%。综合考虑平均相对误差、均方差及插值效果,认为普通克吕格法最好,更能反映土壤参数的空间特征并符合区域水土流失模型对数据的要求。对于普通克吕格法,稳渗速率的Lag步长为30 000 m,半方差理论模型为指数模型;抗冲系数、崩解速率、抗剪强度的Lag步长为55 000,半方差理论模型均为高斯模型。在空间分布上,各指标随土壤类型由北到南呈现明显的地带性规律。 展开更多
关键词 水蚀土壤因子指标 空间插值 反距离权重法 样条函数法 普通克吕格法
下载PDF
黄土高原土壤侵蚀(水蚀)多尺度过程与水土保持研究进展 被引量:15
3
作者 韩晓燕 钱鞠 +2 位作者 王磊 刘芬 毛泽秦 《冰川冻土》 CSCD 北大核心 2012年第6期1487-1498,共12页
从产生土壤侵蚀机理出发,分别阐述了黄土高原地区的坡面、沟谷、小流域、流域尺度上的土壤侵蚀(水蚀)研究现状与取得的进展.结合平凉城南侧泾河一级支沟的纸坊沟小流域治理实践和调查,总结黄土高原地区水土流失治理和水保措施实施的经... 从产生土壤侵蚀机理出发,分别阐述了黄土高原地区的坡面、沟谷、小流域、流域尺度上的土壤侵蚀(水蚀)研究现状与取得的进展.结合平凉城南侧泾河一级支沟的纸坊沟小流域治理实践和调查,总结黄土高原地区水土流失治理和水保措施实施的经验及其存在的不足.建议未来的研究向着"规划性"、"综合性"、"量化尺度性"、"弱化尺度性"模型的研究方向发展,这对提高地区水土保持质量、改善水土流失治理现状、实现水保效益最大化目标具有重要意义. 展开更多
关键词 土壤侵蚀(水蚀) 多尺度过程 水土保持 黄土高原
下载PDF
柠条对土壤风蚀水蚀的防护作用 被引量:6
4
作者 王淑琴 高秀芳 《现代农业》 2005年第7期47-47,共1页
关键词 柠条 土壤风蚀水蚀 防护作用 土壤改良 造林技术 养护管理
下载PDF
Effect of Different Vegetation Types on Soil Erosion by Water 被引量:27
5
作者 张岩 刘宝元 +1 位作者 张清春 谢云 《Acta Botanica Sinica》 CSCD 2003年第10期1204-1209,共6页
The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns... The C factor in Universal Soil loss Equation reflecting the effect of vegetation on soil erosion by water is one of the important parameters for estimating soil erosion rate and selecting appropriate land use patterns. In this study, the C factor for nine types of grassland and woodland was estimated from 195 plot-year observation data of six groups of soil erosion experiments on Loess Plateau. The result indicates that the effects of woodland and grassland on soil erosion keep approximately uniform after two or three years' growth. The estimated woodland C factor ranges from 0.004 to 0.164, and the grassland C factor ranges from 0.071 to 0.377, showing that the effect of woodland and grassland on soil conservation is greatly better than that of cropland. The study results can be used to compare or estimate the soil loss from land with different vegetation cover, and are the useful references for land use pattern selection and the project of returning cropland to forest or grassland. 展开更多
关键词 soil erosion by water C factor WOODLAND GRASSLAND CROPLAND
下载PDF
Study on Relative Soil and Water Conservation Benefits of Ridge Tillage in Different Terrain Conditions in the Black Soil Area of Northeast China
6
作者 赵玉明 姜洪涛 王世界 《Agricultural Science & Technology》 CAS 2015年第10期2354-2360,共7页
Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore... Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures. 展开更多
关键词 The black soil area in northeast China Ridge tillage Ridge direction Soil erosion Investigation of soil and water loss Soil and water conservation benefits
下载PDF
The runoff characteristics and harmonic analysis of the soil moisture dynamics in Robinia pseudoacacia stand 被引量:1
7
作者 高鹏 刘作新 陈伏生 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期295-298,共4页
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes... Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion. 展开更多
关键词 Hilly semi-arid area Robinia pseudoacacia stand Runoff generation characteristics Soil moisture dynamics Harmonic analysis
下载PDF
Functional Rehabilitation of the "Soil Reservoir"in Degraded Soils to Control Floods in the Yangtze River Watershed 被引量:9
8
作者 SHIXue-Zheng LIANGYin +3 位作者 YUDong-Sheng PANXian-Zhang E.D.WARNER WANGHong-Jie 《Pedosphere》 SCIE CAS CSCD 2004年第1期1-8,共8页
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A ... The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River. 展开更多
关键词 flood calamity soil erosion 'soil reservoir' the yangtze river watershed
下载PDF
Effects of Accelerated Soil Erosion on Soil Nutrient Loss After Deforestation on the Loess Plateau 被引量:12
9
作者 ZHENG Fen-Li 《Pedosphere》 SCIE CAS CSCD 2005年第6期707-715,共9页
Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestatio... Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestation, on organic matter, nitrogen and phosphorus losses. Eight natural runoff plots were established on the loessial hill slopes representing different erosion patterns of dominant erosion processes including sheet, rill and shallow gully (similar to ephemeral gully). Sediment samples were collected after each erosive rainfall event. Results showed that soil nutrients losses increased with an increase of erosion intensity. Linear relations between the losses of organic matter, total N, NH4-N, and available P and erosion intensity were found. Nutrient content per unit amount of eroded sediment decreased from the sheet to the shallow gully erosion zones, whereas total nutrient loss increased. Compared with topsoil, nutrients in eroded sediment were enriched, especially available P and NH4-N. The intensity of soil nutrient losses was also closely related to soil erosion intensity and pattern with the most severe soil erosion and nutrient loss occurring in the shallow gully channels on loessial hill slopes. These research findings will help to improve the understanding of the relation between accelerated erosion process after deforestation and soil quality degradation and to design better eco-environmental rehabilitation schemes for the Loess Plateau. 展开更多
关键词 accelerated soil erosion DEFORESTATION erosion intensity Loess Plateau nutrient loss
下载PDF
APPLICATION OF SWAT MODEL IN THE UPSTREAM WATERSHED OF THE LUOHE RIVER 被引量:14
10
作者 ZHANG Xue-song, HAO Fang-hua, CHENG Hong-guang, LI Dao-feng (State Key Laboratory of Water Environment Simulation,Institute of Environmental Sciences, Beijing Normal University,Beijing 100875,P. R. China) 《Chinese Geographical Science》 SCIE CSCD 2003年第4期334-339,共6页
In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hyd... In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin. 展开更多
关键词 luohe river WATERSHED SWAT model SEDIMENT FLOW
下载PDF
SOTER-Based Soil Water Erosion Simulation in Hainan Island 被引量:16
11
作者 ZHAO YUGUO, ZHANG GANLIN and GONG ZITONGInstitute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 2003年第2期139-146,共8页
The actual and potential water erosion rates of soils with different landcovers in Hainan Island, China, were estimated based on the universal soil loss equation (USLE) anda 1:200000 Soils and Terrain Digital Database... The actual and potential water erosion rates of soils with different landcovers in Hainan Island, China, were estimated based on the universal soil loss equation (USLE) anda 1:200000 Soils and Terrain Digital Database (SOTER) database, from which soil water erosionfactors could be extracted. 92.8% of the whole island had a current erosion rate of lower than 500 tkm^(-2) a^(-1). Soil erosion risk was considered to be high because of its abundant rainfall.Without vegetation cover, the potential soil erosion rate would be extremely high and 90.8% of theisland would have a soil erosion rate higher than 2500 t km^(-2) a^(-1). Relative erosionvulnerability of different soil zones, landform types, and lithological regions of the island wascompared by introducing a relative erosion hazard parameter a. Cambosols developed from siltstoneand mudstone in low hill regions were pinpointed as soils with the highest erosion risk in theisland. 展开更多
关键词 hainan island soil erosion risk assessment SOTER USLE
下载PDF
Soil Strength Characteristics Along an Arable Eroded Slope 被引量:6
12
作者 PENG Xin-Hua ZHANG Bin +1 位作者 ZHAO Qi-Guo R. HORN 《Pedosphere》 SCIE CAS CSCD 2005年第6期739-745,共7页
Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the s... Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spatial changes in soil strength along the eroded slope and to ewluate an indicator to determine soil strength during compaction. Precompression stress, as an indicator of soil strength, significantly increased from topsoil layer to subsoil layer (P 〈0.05) and was affected by slope position. In the subsoil layer (20-35 cm), the precompression stress at the footslope position was significantly greater than at the backslope and upslope positions (P 〈0.05), while there were no significant differences at 0-15 and 100-115 cm. Precompression stress followed the spatial wriation of soil clay content with soil depth and had a significant linear relationship with soil porosity (r^2 = 0.40, P 〈 0.01). Also, soil cohesion increased with increasing soil clay content. The precompression stress was significantly related to the applied stress corresponding to the highest change of pore water pressure (r^2 = 0.69, P 〈 0.01). These results suggested that soil strength induced by soil erosion and soil management wried spatially along the slope and the maximum change in pore water pressure during compaction could be an easy indicator to describe soil strength. 展开更多
关键词 pore water pressure precompression stress soil erosion soil strength
下载PDF
Soil Erosion Changes over the Past Five Decades in the Red Soil Region of Southern China 被引量:18
13
作者 LIANG Yin LI Decheng +5 位作者 LU Xixi YANG Xuan PAN Xianzhang MU Huan SHI Deming ZHANG Bin 《Journal of Mountain Science》 SCIE CSCD 2010年第1期92-99,共8页
This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guang... This paper reports the dynamic changes of soil and water loss in the red soil region of Southern China since the 1950s. The red soil region covers eight provinces: Jiangxi, Zhejiang, Fujian, Anhui, Hubei, Hunan, Guangdong and Hainan. From the 1950s to 1986, the annual rate of soil erosion increased by 3.4%. From 1986 to 1996 and from 1996 to 2000, the annual rates of soil erosion decreased by 2.0% and 0.32%, respectively. Field surveys showed that from 2000 to 2005, the area of soil and water loss decreased annually by 1.2%. This decrease was a result of large-scale erosion control activities across China. Although the eroded soil has been restored, the restoration process is very slow and full restoration will take a long time. Our report suggests that controlling soil and water loss is a challenging task, and additional measures must be taken to effectively control the soil erosion in the red soil region. 展开更多
关键词 red soil region soil and water loss dynamic change remote sensing field samplingsurvey
下载PDF
Mapping the Risk of Water Erosion in the Watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, China 被引量:3
14
作者 DU He-qiang XUE Xian WANG Tao 《Journal of Mountain Science》 SCIE CSCD 2015年第1期70-84,共15页
Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Be... Mapping and assessing soil-erosion risk can address the likelihood of occurrence of erosion as well as its consequences. This in turn provides precautionary and relevant suggestions to assist in disaster reduction. Because soil erosion by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River is closely related to silting of the upper reaches of the Yellow River, it is necessary to assess erosion risk in this watershed. This study aims to identify the soil-erosion risk caused by water in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River from 2ool to aOlO. Empirical models called Chinese Soil Loss Equation (CSLE) and Modified Universal Soil Loss Equation (MUSLE) were used to predict the erosion modulus in slope surfaces and gullies. Then the soil erosion risk in this watershed was assessed according to the classification criteria of soil erosion intensities (SL19o-2oo7). The study results showed that the range of values of the erosion modulus in this watershed was o-44,733 t/km2/a. More than 20% of the total watershed area was found to present an erosion risk, with the regions at risk mainly located in channels and their upper reaches, and in mountainous areas. To determine the regression coefficients of the erosion factors with respect to erosion modulus, a GWR (geographically weighted regression) was carried out using the ArcGIS software. It was found that the topographic factor has the highest contribution rate to the soil erosion modulus, while the highest contribution rate of the erosion factors to the erosion modulus and the largest values of the factors were not located in the same places. Based on this result, the authors propose that slope management is the most important task in preventing soil loss in this watershed, and the soil- conservation projects should be built according to the eontribution rate of the erosion factors. 展开更多
关键词 Chinese Soil Loss Equation (CSLE) Erosion risk Geographically weighted regression(GWR) Yellow River
下载PDF
Soil Conservation Measures in Rainfed Olive Orchards in South-Eastern Spain: Impacts of Plant Strips on Soil Water Dynamics 被引量:8
15
作者 V. H. DURN ZUAZO C. R. RODRíGUEZ PLEGUEZUELO +3 位作者 L. ARROYO PANADERO A. MARTíNEZ RAYA J. R. FRANCIA MARTíNEZ B. CRCELES RODRíGUEZ 《Pedosphere》 SCIE CAS CSCD 2009年第4期453-464,共12页
Sloping and mountainous olive production systems are widespread, occupying large parts of the Mediterranean landscape prone to water erosion. Soil erosion, runoff, and soil water content patterns over a three-year per... Sloping and mountainous olive production systems are widespread, occupying large parts of the Mediterranean landscape prone to water erosion. Soil erosion, runoff, and soil water content patterns over a three-year period were monitored in erosion plots on a mountainside with rainfed olive (Olea europaea cv. Picual) trees under: 1) non-tillage with barley strips of 4 m width (BS); 2) non-tillage with native vegetation strips of 4 m width (NVS); and 3) non-tillage without plant strips (NT). The erosion plots, located in Lanjaron (Granada, south-eastern Spain), on a 30% slope, were 192 m2 in area. For assessing soil water dynamics in real-time and near-continuous soil water content measurements, multisensor capacitance probes were installed in the middle of plant strips and beneath the olive tree at five soil depths (10, 20, 30, 50, and 100 cm). The highest erosion and runoff rates were measured under NT, with a mean of 17.3 Mg ha-1 year-1 and 140.0 mm year-1, respectively, over the entire study period. The BS and NVS with respect to the NT reduced erosion by 71% and 59% and runoff by 95% and 94%, respectively. In general, greater available soil water content was found under BS than NVS and NT, especially beneath the olive tree canopies. These results supported the recommendation of non-tillage with barley strips in order to reduce erosion and to preserve soil water for trees in traditional mountainous olive-producing areas, where orchards cover vast tracts of land. 展开更多
关键词 farming systems native plants RUNOFF soil erosion
下载PDF
Methodological Framework for a Multi-Scale Study on Hydrological Processes and Soil Erosion in Subtropical Southeast China 被引量:8
16
作者 H. ZEPP TANG Jia-Liang ZHANG Bin 《Pedosphere》 SCIE CAS CSCD 2005年第6期695-706,共12页
This paper introduces and illustrates the concepts of geoecological process combinations and geographical or landscape dimensions by outlining the methodology of a Sino-German cooperative project in Southeast China an... This paper introduces and illustrates the concepts of geoecological process combinations and geographical or landscape dimensions by outlining the methodology of a Sino-German cooperative project in Southeast China and presents the first results of the modelling process for the catchment scale. The project equipped a catchment in subtropical Southeast China from plot scale to catchment scale in order to study the hydrological and soll erosion processes. Distinct spatial differences in principal water and soil material fluxes were quantified. Deep drainage peaks occurred in May, June and July and even in August and November. Measurements in erosion plots as well as sedimentary deposits revealed that there was soil erosion connected with overland flow. Consistent with the results from the regular catenary variations of soil colors, textural stratification and hydrograph analysis, there was also a clear indication of interflow from measured soil moisture data. The experimental set up has the potential to further deepen the understanding of small-scale processes involved in lateral water fluxes and soil erosion. The expected results and interpretations will lead to a further integration of the collected data. In the future, to understand matter transfer in and between landscape ecological units, agricultural influence on nutrient status and flux data will be incorporated. 展开更多
关键词 CATCHMENT geoecological process combination landscape ecology soil erosion
下载PDF
Combined Effects of Water Quality and Furrow Gradient on Runoff and Soil Erosion in North China 被引量:3
17
作者 LI Fa-Hu ZHANG Li-Jun3 《Pedosphere》 SCIE CAS CSCD 2010年第1期35-42,共8页
Irrigation-induced soil erosion seriously affects the sustainability of irrigated agriculture. The effects of irrigation water quality and furrow gradient on runoff and soil loss were studied under simulated furrow ir... Irrigation-induced soil erosion seriously affects the sustainability of irrigated agriculture. The effects of irrigation water quality and furrow gradient on runoff and soil loss were studied under simulated furrow irrigation in laboratory using a soil collected from an experimental station of China Agricultural University, North China. The experimental treatments were different combinations of irrigation water salt concentrations of 5, 10, 20, and 30 mmol c L-1 , sodium adsorption ratios (SAR) of 0.5, 5.0, and 10.0 (mmol c L-1 ) 0.5 , and furrow gradients of 1%, 3%, and 5%, with distilled water for irrigation at 3 furrow gradients as controls. The experimental data indicated that total runoff amount, sediment concentration in runoff, and total soil loss amount generally decreased with increasing salt concentration in irrigation water but increased with its sodicity and furrow gradient. The effects of water quality and furrow gradient on soil loss were greater than those on runoff, and the increase of furrow gradient decreased the influence of water quality on soil loss. When the salt concentration increased from 5 to 30 mmol c L-1 at SAR of 10.0 (mmol c L-1 ) 0.5 , total runoff amount, sediment concentration, and total soil loss amount decreased by 3.89%, 52.1%, and 53.92%, and 10.57%, 38.86%, and 42.03% at the furrow gradients of 1% and 5%, respectively. However, they respectively increased by 3.37%, 45.34%, and 55.36%, and 3.86%, 10.77%, and 13.91% when SAR increased from 0.5 to 10.0 (mmol c L-1 ) 0.5 at the salt concentration of 5 mmol c L-1 . Irrigation water quality and furrow gradient should be comprehensively considered in the planning and management of furrow irrigation practices to decrease soil loss and improve water utilization efficiency. 展开更多
关键词 salt concentration sediment concentration sodium adsorption ratio (SAR) soil dispersion soil loss
下载PDF
Comparative Study on Rain Splash Erosion of Representative Soils in China 被引量:6
18
作者 CHENG Qinjuan CAI Qiangguo MA Wenjun 《Chinese Geographical Science》 SCIE CSCD 2008年第2期155-161,共7页
As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious so... As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to ana-lyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were col-lected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corre-sponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic mat-ter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount be-cause it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the sta-bility is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface. 展开更多
关键词 rain splash erosion black soil loess soil red soil purple soil soil crust
下载PDF
Study on Original Ecological Tridimensional Slope Vegetation 被引量:2
19
作者 YAN Zhi-xin REN Zhi-hua +2 位作者 YAN Chang-ming JIANG Ping WANG Hou-yu 《Journal of Mountain Science》 SCIE CSCD 2013年第6期932-939,共8页
No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become th... No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established. 展开更多
关键词 Original ecology Tridimensional slope Slope vegetation
下载PDF
Effects of Shrub on Runoff and Soil Loss at Loess Slopes Under Simulated Rainfall 被引量:6
20
作者 XIAO Peiqing YAO Wenyi +3 位作者 SHEN Zhenzhou YANG Chunxia LYU Xizhi JIAO Peng 《Chinese Geographical Science》 SCIE CSCD 2017年第4期589-599,共11页
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the ef... Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m^2) for bare soil plots and from 5.61 to 84.58 g/(min·m^2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots. 展开更多
关键词 runoff soil loss shrub bare soil rainfall intensity loess slope
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部