In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m se...In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.展开更多
The thermal response of hedges alters the urban climate, resulting in energy and comfort affectations that impact city dwellers, so the aim of this study is to analyze the energy fluxes of urban horizontal coverage, e...The thermal response of hedges alters the urban climate, resulting in energy and comfort affectations that impact city dwellers, so the aim of this study is to analyze the energy fluxes of urban horizontal coverage, especially expanded polystyrene waterproofed with elastomeric paint in the city of Mexicali, Baja California, located northwest of Mexico. The experiment was realized on summer of 2011 and 2012 by using four components radiometric sensor, eddy covariance equipment, which was possible to analyze the behavior and intensities of heat fluxes using the model Q* = QE + QG + QH + QF + QD. The results show that in both campaigns the sensible heat flux exceeds the net radiation, in 2011 the net radiation was 31.41 W/mE and sensible heat flux of 74.9 W/m2, in 2012 resulted 43.46 W/m2 and 87.32 W/mE, respectively. This additional heat flux is attributed to the thermal influence of the air conditioning units, which changes the energy balance model to Q* = QH + QF + QD. With the results arise the need for experimentation on a larger scale in which it is possible to model the flow in housing development. The knowledge of the energy balance model will help to propose materials that minimize the thermal impact to the city of Mexicali.展开更多
During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vo...During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vortex(SWV) and an eastward-moving Dabie vortex(DBV) during the mei-yu period of 2010 have been investigated to clarify the main similarities and differences between them.The synoptic analyses reveal that the SWV and DBV were both located at the lower troposphere;however,the SWV developed in a "from top down" trend,whereas the DBV developed in an opposite way.There were obvious surface closed low centers corresponding to the DBV during its life span,whereas for the SWV,the closed low center only appeared at the mature stage.Cold and warm air intersected intensely after the formation of both the vortices,and the cold advection in the SWV case was stronger than that in the DBV case,whereas the warm advection in the DBV case was more intense than that in the SWV case.The Bay of Bengal and the South China Sea were main moisture sources for the SWV,whereas for the DBV,in addition to the above two moisture sources,the East China Sea was also an important moisture source.The vorticity budget indicates that the convergence was the most important common factor conducive to the formation,development,and maintenance of the SWV and DBV,whereas the conversion from the vertical vorticity to the horizontal one(tilting) was the most important common factor caused the dissipation of both of the vortices.The kinetic energy(KE) budget reveals that the KE generation by the rotational wind was the dominant factor for the enhancement of KE associated with the SWV,whereas for the DBV,the KE transport by the rotational wind was more important than the KE generation.The KE associated with the SWV and the DBV weakened with different mechanisms during the decaying stage.Furthermore,the characteristics of baroclinic and barotropic energy conversions during the life spans of both vortices indicate that the SWV and DBV both belong to the kind of subtropical mesoscale vortices.展开更多
基金National Planed Major S&T Projects(No.2011ZX05002-002)Scientific Research Project of Sinopec(No.P03011)Key Technology Tacking Project,Shengli Oilfield Company,Sinopec(No.YKK0808)
文摘In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.
文摘The thermal response of hedges alters the urban climate, resulting in energy and comfort affectations that impact city dwellers, so the aim of this study is to analyze the energy fluxes of urban horizontal coverage, especially expanded polystyrene waterproofed with elastomeric paint in the city of Mexicali, Baja California, located northwest of Mexico. The experiment was realized on summer of 2011 and 2012 by using four components radiometric sensor, eddy covariance equipment, which was possible to analyze the behavior and intensities of heat fluxes using the model Q* = QE + QG + QH + QF + QD. The results show that in both campaigns the sensible heat flux exceeds the net radiation, in 2011 the net radiation was 31.41 W/mE and sensible heat flux of 74.9 W/m2, in 2012 resulted 43.46 W/m2 and 87.32 W/mE, respectively. This additional heat flux is attributed to the thermal influence of the air conditioning units, which changes the energy balance model to Q* = QH + QF + QD. With the results arise the need for experimentation on a larger scale in which it is possible to model the flow in housing development. The knowledge of the energy balance model will help to propose materials that minimize the thermal impact to the city of Mexicali.
基金supported by the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(Grant No. 2010LASW-A02)National Natural Science Foundation of China(Grant Nos.40930951 and 41040037)+1 种基金Chinese Special Scientific Research Project for Public Interest(Grant No.GYHY200906004)National Key Basic Research and Development Project(Grant No.2010CB951804)
文摘During the mei-yu period,the east edge of the Tibetan Plateau and the Dabie Mountain are two main sources of eastward-moving mesoscale vortices along the mei-yu front(MYF).In this study,an eastward-moving southwest vortex(SWV) and an eastward-moving Dabie vortex(DBV) during the mei-yu period of 2010 have been investigated to clarify the main similarities and differences between them.The synoptic analyses reveal that the SWV and DBV were both located at the lower troposphere;however,the SWV developed in a "from top down" trend,whereas the DBV developed in an opposite way.There were obvious surface closed low centers corresponding to the DBV during its life span,whereas for the SWV,the closed low center only appeared at the mature stage.Cold and warm air intersected intensely after the formation of both the vortices,and the cold advection in the SWV case was stronger than that in the DBV case,whereas the warm advection in the DBV case was more intense than that in the SWV case.The Bay of Bengal and the South China Sea were main moisture sources for the SWV,whereas for the DBV,in addition to the above two moisture sources,the East China Sea was also an important moisture source.The vorticity budget indicates that the convergence was the most important common factor conducive to the formation,development,and maintenance of the SWV and DBV,whereas the conversion from the vertical vorticity to the horizontal one(tilting) was the most important common factor caused the dissipation of both of the vortices.The kinetic energy(KE) budget reveals that the KE generation by the rotational wind was the dominant factor for the enhancement of KE associated with the SWV,whereas for the DBV,the KE transport by the rotational wind was more important than the KE generation.The KE associated with the SWV and the DBV weakened with different mechanisms during the decaying stage.Furthermore,the characteristics of baroclinic and barotropic energy conversions during the life spans of both vortices indicate that the SWV and DBV both belong to the kind of subtropical mesoscale vortices.