[ Objective] This study was to research the treatment effect of different media in undercurrent wetland on contamination, so as to pro- vide reference for rehabitating water body of river along small towns. [ Method ]...[ Objective] This study was to research the treatment effect of different media in undercurrent wetland on contamination, so as to pro- vide reference for rehabitating water body of river along small towns. [ Method ] Three different media of gravel, cobblestone and shale were used to rehabilitate water quality of contaminated river. [ Result ] Gravel, cobblestone and shale all performed well in removing TN, TP and CODw,, in contaminated water, of which gravel stuffed undercurrent wetland run best, averagely removing 49.4% TN, 34.7% and 48. 5% COD~, respectively. [ Conclusion] Undercurrent constructed wetland can effectively improve the water quality of contaminated river, and it is cheaper in cost and simpler in operation, thus suitable for generalizing in small towns of China.展开更多
During advanced water detection using the transient electromagnetic method, the exploration effect for water-rich area is often poor due to the interference of bolts that are distributed in different positions in work...During advanced water detection using the transient electromagnetic method, the exploration effect for water-rich area is often poor due to the interference of bolts that are distributed in different positions in working face. Thus, the study on the interference characteristics of bolts in different states has important directive significance for improving the acquisition quality and data processing method in water detection. Based on the analysis of the distribution laws of magnetic field excited by small multi-turn coincident loop in full space of homogeneity, the test on the interference of bolts has been designed in the mine. Through drilling 18 holes around the overlapping coil in the working face, mass data are collected in order with the posi- tion change and the exposed bolt length. The results of comprehensive data analysis show that the transient electromagnetic field is strongly interfered as the distance between the bolt and the center of the coil is less than 3 m, and the interference varies greatly as the distance varies. On the other hand, the field induced by the bolts can be ignored as the distance exceeds 3 m. The findings can help to improve data acquisition and correction during advanced water detection when using the transient electromagnetic method.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows...This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.展开更多
Intensity of cavitation is significant in ultrasonic wastewater treatment,but is complicated to measure.A time difference based method of ultrasonic cavitation measurement is proposed.The time differences at different...Intensity of cavitation is significant in ultrasonic wastewater treatment,but is complicated to measure.A time difference based method of ultrasonic cavitation measurement is proposed.The time differences at different powers of 495 kHz ultrasonic are measured in experiment in comparison with conductimetric method.Simulation results show that time difference and electrical conductivity are both approximately positive proportional to the ultrasonic power.The degradation of PNP solution verifies the availability in wastewater treatment by using ultrasonic.展开更多
Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. ...Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ℃ after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection,展开更多
Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat tra...Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.展开更多
文摘[ Objective] This study was to research the treatment effect of different media in undercurrent wetland on contamination, so as to pro- vide reference for rehabitating water body of river along small towns. [ Method ] Three different media of gravel, cobblestone and shale were used to rehabilitate water quality of contaminated river. [ Result ] Gravel, cobblestone and shale all performed well in removing TN, TP and CODw,, in contaminated water, of which gravel stuffed undercurrent wetland run best, averagely removing 49.4% TN, 34.7% and 48. 5% COD~, respectively. [ Conclusion] Undercurrent constructed wetland can effectively improve the water quality of contaminated river, and it is cheaper in cost and simpler in operation, thus suitable for generalizing in small towns of China.
基金Supported by the Key Projects of Anhui Provincial Scientific and Technological Program (11010401015) the Key Program of National Natural Science Foundation of China (51134012)
文摘During advanced water detection using the transient electromagnetic method, the exploration effect for water-rich area is often poor due to the interference of bolts that are distributed in different positions in working face. Thus, the study on the interference characteristics of bolts in different states has important directive significance for improving the acquisition quality and data processing method in water detection. Based on the analysis of the distribution laws of magnetic field excited by small multi-turn coincident loop in full space of homogeneity, the test on the interference of bolts has been designed in the mine. Through drilling 18 holes around the overlapping coil in the working face, mass data are collected in order with the posi- tion change and the exposed bolt length. The results of comprehensive data analysis show that the transient electromagnetic field is strongly interfered as the distance between the bolt and the center of the coil is less than 3 m, and the interference varies greatly as the distance varies. On the other hand, the field induced by the bolts can be ignored as the distance exceeds 3 m. The findings can help to improve data acquisition and correction during advanced water detection when using the transient electromagnetic method.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
基金supported by theopen fund project of Scientific Alleviation of Disasters and Home Rebuilding(Grant No.DZJK-0814)from the Chinese State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology
文摘This paper presents a lumped mass model to describe the run-out and velocity of a series of large flume tests,which was carried out to investigate some propagation mechanisms involved in rapid,dry,dense granular flows and energy transformation when the flows encountered obstacles and reoriented their movement directions.Comparisons between predicted and measured results show that the trend of predicted velocities was basically matched with that of measured ones.Careful scrutiny of test videos reveals that subsequent particles with a higher velocity collided with slowed fronts to make them accelerate. However,this simple model cannot reflect collisions between particles because it treated released materials as a rigid block.Thus,the predicted velocity was somewhat lower than the measured velocity in most cases.When the flow changed its direction due to the variation in slope inclination,the model predicted a decrease in velocity.The predicted decrease in velocity was less than the measured one within a reasonable range of 10% or less.For some cases in which a convexity was introduced,the model also predicted the same trend of velocities as measured in the tests.The velocity increased greatly after the materials took a ballistic trajectory from the vertex of the convexity,and reduced dramatically when they finally made contact with the base of the lower slope.The difference between prediced and measured decrease in velocity was estimated to be about 5% due to the landing.Therefore,the simple lumped mass model based on the energy approach could roughly predict the run-out and velocity of granular flows,although it neglected internal deformation,intergranular collision and friction.
基金Supported by the National Natural Science Foundation of China(No.11274092,11274091,11304026)the Fundamental Research Funds for the Central Universities(No.14B10128)
文摘Intensity of cavitation is significant in ultrasonic wastewater treatment,but is complicated to measure.A time difference based method of ultrasonic cavitation measurement is proposed.The time differences at different powers of 495 kHz ultrasonic are measured in experiment in comparison with conductimetric method.Simulation results show that time difference and electrical conductivity are both approximately positive proportional to the ultrasonic power.The degradation of PNP solution verifies the availability in wastewater treatment by using ultrasonic.
基金supported by the Key Project of National Natural Science Foundation‘‘Deep Heat Governance and Utilization’’(No.51134005)the Doctoral Fund of Ministry of Education(No.20120023120004)
文摘Regarding the lack of cold source for underground cooling systems from either mine inflow or return air, field experiments were taken in a high temperature deep coal mine with abundant cold source from surface water. Taking Sanhejian coal mine as an example, this paper introduced the technology scheme of heat disaster governance using surface water cold source. The paper presents the basics of this field experiment at the beginning, following by the design and site layout of the cooling system including the analysis and calculation of cold source. Numerical calculation method is also applied based on the operation parameters to simulate the influence to the surface river ecosystem. The results suggest that the temperature of surface water shall be lower than 34 ℃ after heat exchange, and when more cooling capacities are needed in the future, increasing the water flow is more favorable than increasing the cooling range of water, which is better for the ecological environment protection,
基金supported by the National Natural Science Foundation of China (Grant No. 51078053)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT11ZD105)
文摘Theory of film condensation heat transfer(FCHT) for vapor condensed on horizontal tube bundle(HTB) is vital to many industry processes.Meanwhile,the inundation effect is the key to model the film condensation heat transfer coefficient(CHTC) on HTB.This paper proposed a new experimental method,homologous method,to obtain the inundation effect precisely.Based on the requirements of the new test method,a new test facility was designed and established.Then,the superiority of homologous method for inundation effect was investigated based on experiment result and theoretic analysis.The results showed that the homogenous method can effectively control the experimental error of inundation effect,which is less than 50% of the error of CHTC,and less than 30% of the error of the inundation effect gained by routine method.The new test facility built for the homogenous method is excellent in obtaining the accurate inundation effect of film condensation on HTB.All the result is a foundation of the theoretical development of the FCHT on HTB.