The air quality directive (2008/50/EC (of the European Parliament and of the Council of 21 May 2008)) requires European Member States to design appropriate AQPs (air quality plans) for zones and agglomerations w...The air quality directive (2008/50/EC (of the European Parliament and of the Council of 21 May 2008)) requires European Member States to design appropriate AQPs (air quality plans) for zones and agglomerations where the air quality does not comply with the limit values and to assess possible emission reduction measures to decrease concentration levels. The Portuguese agglomeration of Porto Litoral is one of the several European Union urban areas that had to develop and implement AQPs to reduce particulate matter (PM10). The AQPs were initially designed based on a scenario approach and using an air quality model, which was applied over the study region for the reference situation with the current PM10 emissions, and for a reduction scenario with PM10 emissions re-estimated considering the implementation of abatement measures. Aiming to cost-efficiently optimize Porto Litoral PM10 abatement measures, the assessment procedure was repeated using an optimization approach based on the RIAT + (regional integrated assessment tool +). Porto Litoral urban area's technical and non-technical measures were characterized (including associated costs) and, through the application of the air quality model to 20 emissions abatement scenarios, S-R (source-receptor) relationships were created. This paper comparatively describes the air quality plans designed to improve PM10 levels in the Porto Litoral agglomeration based on both the scenario analysis and the optimization approach.展开更多
Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipmen...Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.展开更多
文摘The air quality directive (2008/50/EC (of the European Parliament and of the Council of 21 May 2008)) requires European Member States to design appropriate AQPs (air quality plans) for zones and agglomerations where the air quality does not comply with the limit values and to assess possible emission reduction measures to decrease concentration levels. The Portuguese agglomeration of Porto Litoral is one of the several European Union urban areas that had to develop and implement AQPs to reduce particulate matter (PM10). The AQPs were initially designed based on a scenario approach and using an air quality model, which was applied over the study region for the reference situation with the current PM10 emissions, and for a reduction scenario with PM10 emissions re-estimated considering the implementation of abatement measures. Aiming to cost-efficiently optimize Porto Litoral PM10 abatement measures, the assessment procedure was repeated using an optimization approach based on the RIAT + (regional integrated assessment tool +). Porto Litoral urban area's technical and non-technical measures were characterized (including associated costs) and, through the application of the air quality model to 20 emissions abatement scenarios, S-R (source-receptor) relationships were created. This paper comparatively describes the air quality plans designed to improve PM10 levels in the Porto Litoral agglomeration based on both the scenario analysis and the optimization approach.
基金Project(2011B061200043)supported by the Guangdong Provincial Department of Science and Technology,China
文摘Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.