以石羊河流域为例,使用水资源评价和规划模型WEAP(Water Evaluation and PlanningSystem,WEAP),建立了该流域的水资源管理模型,并对石羊河流域重点治理规划中提出的调整种植结构措施对水资源的影响进行了量化分析.结果表明,模型可以针...以石羊河流域为例,使用水资源评价和规划模型WEAP(Water Evaluation and PlanningSystem,WEAP),建立了该流域的水资源管理模型,并对石羊河流域重点治理规划中提出的调整种植结构措施对水资源的影响进行了量化分析.结果表明,模型可以针对各种管理措施,组成管理方案,进行效果分析,以达到流域水资源的最佳利用.展开更多
Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via...Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via its application to Hengshui Basin of Fudong Pai River. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users' behavior. Water demand management is one of the options discussed in detail. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. Within the limits of data availability, it appears that most water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not suffice during dry years. Nevertheless, the ease of use of the model and its user-friendly interfaces make it particularly useful for discussions and dialogue on water resources management among stakeholders.展开更多
This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation.The Meimao Sandbank is located along the southern bank of the South Pass...This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation.The Meimao Sandbank is located along the southern bank of the South Passage in the Changjiang(Yangtze River) estuary,which is considered as a freshwater resource for Shanghai City.Interaction between runoff and tide is the main mechanism of the freshwater zone formation.However,the freshwater zone often suffers from saltwater intrusion in dry season.Tidal oscillation is stronger during spring tides,able to carry freshwater farther seaward.Therefore,it is more likely to occur during the ebb of a spring tide in dry seasons.In addition,the water zone is sensitive to runoff:when runoff decreases,it disappears,and vice versa.The northerly winds favor the formation of the freshwater zone.展开更多
Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Spec...Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.展开更多
With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed b...With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters.展开更多
Identifying the underlying mechanisms that influence the spatial patterns in populations improves the forecasts of the alternative management strategies on the spatial dynamics of the populations, which are critical f...Identifying the underlying mechanisms that influence the spatial patterns in populations improves the forecasts of the alternative management strategies on the spatial dynamics of the populations, which are critical for assessing and managing the fisheries and improving the water resource management. This paper described a new approach of the numerical model for the prediction of the aquatic animal distribution in the flows. The model was developed based on the kinetic theory of gases, the mechanism of the aquatic animal movement and the flow hydrodynamic patterns. The model was validated using the available experimental data and an acceptable agreement was obtained. A comprehensive parameter study was then conducted to help understand the impact and the sensitivity of each parameter to the aquatic animal distribution. The promising results of the model reveal the prospect of applying this model to the reliable prediction of the aquatic animal distribution within a relatively large water area.展开更多
文摘以石羊河流域为例,使用水资源评价和规划模型WEAP(Water Evaluation and PlanningSystem,WEAP),建立了该流域的水资源管理模型,并对石羊河流域重点治理规划中提出的调整种植结构措施对水资源的影响进行了量化分析.结果表明,模型可以针对各种管理措施,组成管理方案,进行效果分析,以达到流域水资源的最佳利用.
文摘Like many river basins in China, water resources in the Fudong Pai River are almost fully allocated. This paper seeks to assess and evaluate water resource problems using water evaluation and planning (WEAP) model via its application to Hengshui Basin of Fudong Pai River. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users' behavior. Water demand management is one of the options discussed in detail. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. Within the limits of data availability, it appears that most water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not suffice during dry years. Nevertheless, the ease of use of the model and its user-friendly interfaces make it particularly useful for discussions and dialogue on water resources management among stakeholders.
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (No. 40976056)National Major Science and Technology Project of Water Pollution Control and Countermeasures (No. 2008ZX07421-001)
文摘This study focuses on dynamic mechanism behind the formation of the freshwater zone around the Meimao Sandbank by use of 3D numerical simulation.The Meimao Sandbank is located along the southern bank of the South Passage in the Changjiang(Yangtze River) estuary,which is considered as a freshwater resource for Shanghai City.Interaction between runoff and tide is the main mechanism of the freshwater zone formation.However,the freshwater zone often suffers from saltwater intrusion in dry season.Tidal oscillation is stronger during spring tides,able to carry freshwater farther seaward.Therefore,it is more likely to occur during the ebb of a spring tide in dry seasons.In addition,the water zone is sensitive to runoff:when runoff decreases,it disappears,and vice versa.The northerly winds favor the formation of the freshwater zone.
基金supported by the National Natural Science Foundation of China under Grant 40975041the National Basic Research Program of China under Grant 2009CB421407
文摘Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.
基金Project for Popularization of Advanced Meteorological Technology for 2006, China Meteorological Administration (CMATG2006M41)
文摘With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters.
基金supported by the National Natural Science Foundation of China(Grant Nos.51139003&11372161)
文摘Identifying the underlying mechanisms that influence the spatial patterns in populations improves the forecasts of the alternative management strategies on the spatial dynamics of the populations, which are critical for assessing and managing the fisheries and improving the water resource management. This paper described a new approach of the numerical model for the prediction of the aquatic animal distribution in the flows. The model was developed based on the kinetic theory of gases, the mechanism of the aquatic animal movement and the flow hydrodynamic patterns. The model was validated using the available experimental data and an acceptable agreement was obtained. A comprehensive parameter study was then conducted to help understand the impact and the sensitivity of each parameter to the aquatic animal distribution. The promising results of the model reveal the prospect of applying this model to the reliable prediction of the aquatic animal distribution within a relatively large water area.