[Objective] To discuss the application of simulation technique in preliminary solution of reservoir flood control of.[Method] Based on the study of river system simulation theory,the InfoWorks RS system was adopted to...[Objective] To discuss the application of simulation technique in preliminary solution of reservoir flood control of.[Method] Based on the study of river system simulation theory,the InfoWorks RS system was adopted to build a digital analog model for flood routing in certain river system and the flood discharge was analyzed with the check criterion.[Result] The flood information system based on InfoWorks RS simulated the inundation of downstream during flood discharge and drew mutation pictures to indicate how hydraulic parameters of maximum runoff at each control section,runoff of each control section and flow velocity varied with time,how hydraulic elements mutated with time as well as the most likely inundated area analysis of lower reservoir.[Conclusion] To provide references for reducing serious loss caused by flood and making out preliminary solution to flood control.展开更多
Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordin...Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordingly,there is a need to identify suitable operative tools which may differ from the ones used in flat flood-prone areas.This paper shows the results provided by a 1D and a 2D model based on the Shallow Water Equations(SWE) for dam-break wave propagation in alpine regions.The 1D model takes advantage of a topographic toolkit that includes an algorithm for pre-processing the Digital Elevation Model(DEM) and of a novel criterion for the automatic cross-section space refinement.The 2D model is FLO-2D,a commercial software widely used for flood routing in mountain areas.In order to verify the predictive effectiveness of these numerical models,the test case of the Cancano dam-break has been recovered from the historical study of De Marchi(1945),which provides a unique laboratory data set concerning the consequences of the potential collapse of the former Cancano dam(Northern Italy).The measured discharge hydrograph at the dam also provides the data to test a simplified method recently proposed for the characterization of the hydrograph following a sudden dam-break.展开更多
The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual ...The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual production. Based on the actual process model, the operation optimization analysis of each plant(HAc dehydration column, decanter and NPA recycle column) was conducted using Residue Curve Maps(RCMs),sensitivity analysis and software optimization module. Based on the optimized parameters, the influence of feed impurity MA and the temperature of decanter on the separating effect and energy consumption of the whole process were analyzed. Then the whole process operation optimizing strategy was proposed with the objective that the total reboiler duty Q Total of C-1 and C-3 reaches the minimum value, keeping C-1 and C-3 at their optimized separation parameters obtained above, connecting all the broken recycle and connection streams, and using the temperature of D-1 as operation variable. The optimization result shows that the total reboiler duty Q Total of the whole process can reach the minimum value of 128.32 × 10~6 k J·h^(-1) when the temperature of decanter is 352.35 K, and it can save 5.94 × 10~6 k J·h^(-1), about 2.56 t·h^(-1) low-pressure saturated vapor.展开更多
In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the...In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.展开更多
A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The ...A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.展开更多
Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability....Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.展开更多
In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for ...In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for most reactors. However, diffusion theory does not produce accurate results in burnup problems that include strong absorbers or large voids. MCNPX code based on Mont Carlo Method, is used to design a three dimensional model for a BWR fuel assembly in a typical operating temperature and pressure conditions. A test case was compared with a benchmark problem and good agreement was found. The model is used to calculate the distribution of pin by pin power and flux inside the assembly. The effect of axial variation of water (coolant) density, and of control rods motion on the neutron flux and power distribution is analyzed. The effect of addition of Gd2O3 to natural uranium (0.711%) on both the thermal neutron flux and normalized power are analyzed. The concentration of U^235, U^238, Pu^239, and its isotopes is also calculated at burn-up 50 GWD/T.展开更多
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter...In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.展开更多
This paper presents a 10bit 100MS/s CMOS pipelined analog-to-digital converter (ADC) based on an improved 1.5bit/stage architecture. The ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 57dB and ...This paper presents a 10bit 100MS/s CMOS pipelined analog-to-digital converter (ADC) based on an improved 1.5bit/stage architecture. The ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 57dB and maintains 51dB up to 57MHz, the Nyquist frequency for a clock rate of 100Msample/s. The differential non-linearity (DNL) and integral non-linearity (INL) are typically measured as 0.3LSB and 1.0LSB, respectively. The ADC is implemented in a 0.18μm mixed-signal CMOS technology and occupies 0.76mm^2.展开更多
Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on f...Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on flood wave movement. Streambed infiltration should be considered in flood routing. A flood routing model incorporating intensive streambed infiltration is proposed. In the model a streambed infiltration simulation method based on soil infiltration theory is developed. In this method the Horton equation is used to calculate infiltration capacity. A trial-and-error method is developed to calculate infiltration rate and determine whether the flood wave can travel downstream. A formula is derived to calculate infiltration flow per unit length. The Muskingum-Cunge method with streambed infiltration flow as lateral outflow is used for flood routing. The proposed model is applied to the stream from the downstream of the Yuecheng Reservoir to the Caixiaozhuang Hydrometric Station in the Zhangwei River of the Haihe River Basin. Simulation results show that the accuracy of the model is high, and the infiltration simulation method can represent infiltration processes well. The proposed model is simple and practical for flood simulation and forecasting, and can be used in river confluence calculations in a rainfall-runoff model for arid and semiarid regions.展开更多
基金Supported by 948 Project Launched by Ministry of Water Resources(CT200210)~~
文摘[Objective] To discuss the application of simulation technique in preliminary solution of reservoir flood control of.[Method] Based on the study of river system simulation theory,the InfoWorks RS system was adopted to build a digital analog model for flood routing in certain river system and the flood discharge was analyzed with the check criterion.[Result] The flood information system based on InfoWorks RS simulated the inundation of downstream during flood discharge and drew mutation pictures to indicate how hydraulic parameters of maximum runoff at each control section,runoff of each control section and flow velocity varied with time,how hydraulic elements mutated with time as well as the most likely inundated area analysis of lower reservoir.[Conclusion] To provide references for reducing serious loss caused by flood and making out preliminary solution to flood control.
基金developed within the European Project Kulturisk (Grant agreement 265280)
文摘Dam-break analysis is of great importance in mountain environment,especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes.Accordingly,there is a need to identify suitable operative tools which may differ from the ones used in flat flood-prone areas.This paper shows the results provided by a 1D and a 2D model based on the Shallow Water Equations(SWE) for dam-break wave propagation in alpine regions.The 1D model takes advantage of a topographic toolkit that includes an algorithm for pre-processing the Digital Elevation Model(DEM) and of a novel criterion for the automatic cross-section space refinement.The 2D model is FLO-2D,a commercial software widely used for flood routing in mountain areas.In order to verify the predictive effectiveness of these numerical models,the test case of the Cancano dam-break has been recovered from the historical study of De Marchi(1945),which provides a unique laboratory data set concerning the consequences of the potential collapse of the former Cancano dam(Northern Italy).The measured discharge hydrograph at the dam also provides the data to test a simplified method recently proposed for the characterization of the hydrograph following a sudden dam-break.
基金Supported by Shanghai University Youth Teacher Training Program(ZZsl15002)Shanghai Sailing Program(17YF1413100 and 17YF1428300)
文摘The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual production. Based on the actual process model, the operation optimization analysis of each plant(HAc dehydration column, decanter and NPA recycle column) was conducted using Residue Curve Maps(RCMs),sensitivity analysis and software optimization module. Based on the optimized parameters, the influence of feed impurity MA and the temperature of decanter on the separating effect and energy consumption of the whole process were analyzed. Then the whole process operation optimizing strategy was proposed with the objective that the total reboiler duty Q Total of C-1 and C-3 reaches the minimum value, keeping C-1 and C-3 at their optimized separation parameters obtained above, connecting all the broken recycle and connection streams, and using the temperature of D-1 as operation variable. The optimization result shows that the total reboiler duty Q Total of the whole process can reach the minimum value of 128.32 × 10~6 k J·h^(-1) when the temperature of decanter is 352.35 K, and it can save 5.94 × 10~6 k J·h^(-1), about 2.56 t·h^(-1) low-pressure saturated vapor.
基金Supported by the National Natural Science Foundation Key International Cooperation Project of China (No.50521140075), the 863 Attached Financial Supporting Item of Beijing Municipal Science and Technology Commission (No.Z0005186040421) and the Doctor Subject Soecial Financial Supporfing Item of High College (No.20060005002).
文摘In this article,a steady-state mathematical model was developed and experimentally evaluated to inves- tigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the to- tal nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods,this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia,nitrate,and total nitrogen in the effluent.To verify the simulation results,pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results,which proved the validity of the developed model. The sensitivity of the model predictions was analyzed.After verification of the validity,the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period,the effluent total nitrogen concentrations were all below 5mg·L -1 ,with more than 90%removal efficiency.
基金Project(2010CB630800) supported by the National Basic Research Program of China
文摘A heat transfer model of furnace roller cooling process was established based on analysis of furnace roller's structure. The complicated model was solved with iteration planning algorithm based on Newton search. The model is proved logical and credible by comparing calculated results and measured data. Then, the relationship between water flow velocity, inlet water temperature, furnace temperature and roller cross section temperature, outlet water temperature, water temperature rise, cooling water heat absorption was studied. The conclusions and recommendations are mainly as follows: l) Cooling water temperature rise decreases with the increase of water flow velocity, but it has small relationship with inlet water temperature; 2) In order to get little water scale, inlet water temperature should be controlled below 30 ℃. 3) The cooling water flow velocity should be greater than critical velocity. The critical velocity is 0.07 m/s and water flow velocity should be controlled within 0.4-0.8 m/s. Within this velocity range, water cooling efficiency is high and water temperature rise is little. If cooling water velocity increases again, heat loss will increase, leading to energy wasting.
基金Supported by the Spanish Ministry of Science and Innovation,under the project FOXMORE(CTM2006-05114)
文摘Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.
文摘In the last few years, interest in burnup calculations using Monte Carlo methods has increased. Previous burnup codes have used diffusion theory for the neutronic portion of the codes. Diffusion theory works well for most reactors. However, diffusion theory does not produce accurate results in burnup problems that include strong absorbers or large voids. MCNPX code based on Mont Carlo Method, is used to design a three dimensional model for a BWR fuel assembly in a typical operating temperature and pressure conditions. A test case was compared with a benchmark problem and good agreement was found. The model is used to calculate the distribution of pin by pin power and flux inside the assembly. The effect of axial variation of water (coolant) density, and of control rods motion on the neutron flux and power distribution is analyzed. The effect of addition of Gd2O3 to natural uranium (0.711%) on both the thermal neutron flux and normalized power are analyzed. The concentration of U^235, U^238, Pu^239, and its isotopes is also calculated at burn-up 50 GWD/T.
基金Supported by Tianjin Construction Committee Technology Project (No2007-37)
文摘In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
基金supported by the Research and Development Fund for the Applied Materials of Shanghai City(No.07SA16)~~
文摘This paper presents a 10bit 100MS/s CMOS pipelined analog-to-digital converter (ADC) based on an improved 1.5bit/stage architecture. The ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 57dB and maintains 51dB up to 57MHz, the Nyquist frequency for a clock rate of 100Msample/s. The differential non-linearity (DNL) and integral non-linearity (INL) are typically measured as 0.3LSB and 1.0LSB, respectively. The ADC is implemented in a 0.18μm mixed-signal CMOS technology and occupies 0.76mm^2.
基金supported by the National Natural Science Foundation of China(Grant Nos.51279223,51109055,51409169,51309004,51409141)the Public Welfare Industry Funding for Research and Special Projects of Ministry of Water Resources of China(Grant Nos.201001074,201201022)the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2013491011)
文摘Flood routing models are critical to flood forecasting and confluence calculations. In the streams that dry up and disconnect from groundwater, the streambed infiltration is intensive and has a significant effect on flood wave movement. Streambed infiltration should be considered in flood routing. A flood routing model incorporating intensive streambed infiltration is proposed. In the model a streambed infiltration simulation method based on soil infiltration theory is developed. In this method the Horton equation is used to calculate infiltration capacity. A trial-and-error method is developed to calculate infiltration rate and determine whether the flood wave can travel downstream. A formula is derived to calculate infiltration flow per unit length. The Muskingum-Cunge method with streambed infiltration flow as lateral outflow is used for flood routing. The proposed model is applied to the stream from the downstream of the Yuecheng Reservoir to the Caixiaozhuang Hydrometric Station in the Zhangwei River of the Haihe River Basin. Simulation results show that the accuracy of the model is high, and the infiltration simulation method can represent infiltration processes well. The proposed model is simple and practical for flood simulation and forecasting, and can be used in river confluence calculations in a rainfall-runoff model for arid and semiarid regions.