Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexerc...Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.展开更多
Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species (e.g., finfish/shrimp) with extractive aquaculture species (e.g., shellfish/seaweed)....Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species (e.g., finfish/shrimp) with extractive aquaculture species (e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.展开更多
Sexual dimorphism is often used as a proxy for the intensity of sexual selection in comparative studies of sexual selection and diversification. The Mexican Goodeinae are a group of livebearing freshwater fishes with ...Sexual dimorphism is often used as a proxy for the intensity of sexual selection in comparative studies of sexual selection and diversification. The Mexican Goodeinae are a group of livebearing freshwater fishes with large variation between species in sexual dimorphism in body shape. Previously we found an association between variation in morphological sexual dimorphism between species and the amount of gene flow within populations in the Goodeinae. Here we have examined if mor- phological differentiation within a single dimorphic species is related to assortative mating or gene flow between populations. In the Amarillo fish Girardinichthys multiradiatus studies have shown that exaggerated male fins are targets of female preferences. We find that populations of the species differ in the level of sexual dimorphism displayed due to faster evolution of differences in male than female morphology. However, this does not predict variation in assortative mating tests in the laboratory; in fact dif- ferences in male morphology are negatively correlated with assortative mating. Microsatellite markers reveal significant genetic differences between populations. However, gene flow is not predicted by either morphological differences or assortative mating. Rather, it demonstrates a pattern of isolation by distance with greater differentiation between watersheds. We discuss the caveats of predicting behavioural and genetic divergence from so-called proxies of sexual selection [Current Zoology 58 (3): 440-452, 2012].展开更多
文摘Shaheen Basma ti was evolved as a salt tolerant fine rice va riety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanismexercised by this variety in particular and rice plant in general to face the saline environment. Performanceof this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmol L-1) created with NaCl. Recorded data indicated that shoot dry matter was notsignificantly affected by all the three levels of salinity. However, NaCl levels of 60 and 90 mmol L-1 affectedthe root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root andshoot at the first level of salinity (30 mmol L-1) but thereafter the differences were non-significant, indicatingthe preferential absorption of this cation. The K concentration decreased significantly in shoots at all thelevels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca andMg concentrations was not significant. The values of K:Na, Ca:Na and (Ca+Mg):Na ratios in shoot and rootwere comparatively low under stress conditions, indicating that selective ion absorption may be the principalsalt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.
基金supported by the ‘Greenhouse Gas Emissions Reduction Using Seaweeds’ programthe Jeju Sea Grant College Program funded by the Korean Ministry of Land, Transport and Maritime Affairs, Republic of Korea
文摘Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species (e.g., finfish/shrimp) with extractive aquaculture species (e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.
文摘Sexual dimorphism is often used as a proxy for the intensity of sexual selection in comparative studies of sexual selection and diversification. The Mexican Goodeinae are a group of livebearing freshwater fishes with large variation between species in sexual dimorphism in body shape. Previously we found an association between variation in morphological sexual dimorphism between species and the amount of gene flow within populations in the Goodeinae. Here we have examined if mor- phological differentiation within a single dimorphic species is related to assortative mating or gene flow between populations. In the Amarillo fish Girardinichthys multiradiatus studies have shown that exaggerated male fins are targets of female preferences. We find that populations of the species differ in the level of sexual dimorphism displayed due to faster evolution of differences in male than female morphology. However, this does not predict variation in assortative mating tests in the laboratory; in fact dif- ferences in male morphology are negatively correlated with assortative mating. Microsatellite markers reveal significant genetic differences between populations. However, gene flow is not predicted by either morphological differences or assortative mating. Rather, it demonstrates a pattern of isolation by distance with greater differentiation between watersheds. We discuss the caveats of predicting behavioural and genetic divergence from so-called proxies of sexual selection [Current Zoology 58 (3): 440-452, 2012].