With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is f...With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.展开更多
Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect o...Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect of thawless material in orebody, filling effect caused by cubical expansibility of hydrate crystallization and uplifting effect of hard rock layer over cranny belt. The movement and deformation of ground surface caused by underground water solution mining is believed to be much weaker than that caused by well lane mining, which can be predicted by the stochastic medium theory method. On the basis of analysis on the engineering practice of water solution mining, its corresponding parameters can be obtained from the in-site data of the belt water and sand filling mining in engineering analog approach.展开更多
The influence of gas drainage on float coal spontaneous combustion in the work face with "U" style ventilation was studied. Numerical simulation was used to compare the mutative law of steady flow and density field ...The influence of gas drainage on float coal spontaneous combustion in the work face with "U" style ventilation was studied. Numerical simulation was used to compare the mutative law of steady flow and density field in the gob area under different drainage conditions by solving the equation set, including mass, momentum, and component transition. Consequently, the sequence of drainage effect and safety was obtained. The result manifests that the more effective the drainage pattern is, the easier float coal spontaneous combustion is caused due to air being guided into the depth of the gob area when the drainage position is arranged in the gas accumulation area. If the widened scope of oxidation zone exceeds the upper limit of the work face advancing speed, nitrogen injection should be applied to decrease the probability of spontaneous combustion. Then, the pipe laying drainage in the upper angle is most economical and safe compared with other drainage patterns when only the situation of gas accumulation is controlled in the upper angle. Finally, drainage pressure must not be too great. Otherwise the drainage density will decrease even if hazard is caused by back flow possibly happening in the return outlet when the drainage position is arranged near the work face.展开更多
Mine drainage could be filtered and purified through goaf. This innovative technique shows merits, such as high treatment efficiency, remarkable economic benefit and extensive wastewater recycle use. However, it was d...Mine drainage could be filtered and purified through goaf. This innovative technique shows merits, such as high treatment efficiency, remarkable economic benefit and extensive wastewater recycle use. However, it was detected that capacities of purifying mine drainage for goaf were decreased after a period of application. As a result, the effluent could not meet the standard of recycle water. To solve the problem, coagulant was considered to add into mine drainage reducing its high turbid degrees to certain level. After the preliminary flocculation treatment, mine drainage was piped into goaf to purify. In this way, the load of goaf was eased up. Its usage time was also prolonged. Therefore, this paper carried out the coagulation-flocculation jar test for mine drainage to discuss the flocculation parameters. By the experiment, 10 % iron trichloride is selected from four inorganic coagulants as the optimum coagulant. The optimum dose, PH value and sedirs6-7 and 25 min. Velocity mentation time are respectively 2 mL per 800 mL Wastewater gradient G during the process of mixing and reaction is 696 .And the value of GT is 6.264 × 10^5. The values of G and GT will supply the basis for the design of flocculation pool in the project. The flocculation parameters will be significant for the reference of practice.展开更多
Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, ...Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, and put forward a corresponding calculatingmodel demonstrated by practical example.The study provides mining areas,which are covered with a very thick Quaternary soil layer and abundant ground water, witha theoretical basis aimed at forecasting the settling of ground surface.展开更多
This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully ...This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.展开更多
Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thicknes...Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.展开更多
The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts...The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.展开更多
For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distributi...For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distribution, heating law in goaf and to forecast the effects of fire protection by taking the fifth section face of the No. 18 coal seam in Nanshan Coal Mine as the basis for this study. The results demonstrate that if the vertical position of the drainage laneway is so low as to cause serious air leakage, a high oxygen concentration area exists in the return side of the goaf, and there is also a high temperature region which has faster heating rate than in the other areas. The effect of methane drainage on goal heating can be alleviated dramatically by simultaneous plugging and nitrogen injection. The results show that gas data in the return side of the goaf must be detected carefully in the work face, which is of similar drainage arrangement. Therefore, comprehensive fire protection measures should be carried out if conditions permit.展开更多
The subsided water areas with different times of subsidence are chosen to monitor the physicochemical indexes and heavy metal elements. The results indicate that subsided water areas are polluted in different degree. ...The subsided water areas with different times of subsidence are chosen to monitor the physicochemical indexes and heavy metal elements. The results indicate that subsided water areas are polluted in different degree. Some physicochemical indexes of subsided water areas are increased with the development of the subsidence and are changed with the changing of the season. The concentration of As, Cd, Cu, Pb, Se, Zn of subsided water areas is less than national fishery, and surface water quality standards of China , except Hg. And the quality of subsided water hasn't been polluted by heavy metal seriously. Analyzing and appraising the quality of the subsided water can give a reasonable data as basis in using the subsided water resource.展开更多
Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting...Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.展开更多
基金supported by the National Science Foundation of China(No.41374129)Science and Technology Project of Shanxi Province(No.20100321066)Research and Development Project of National Major Scientifi c Research Equipment(No.ZDYZ2012-1-05-04)
文摘With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.
基金Project(40404001) supported by the National Natural Science Foundation of China
文摘Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect of thawless material in orebody, filling effect caused by cubical expansibility of hydrate crystallization and uplifting effect of hard rock layer over cranny belt. The movement and deformation of ground surface caused by underground water solution mining is believed to be much weaker than that caused by well lane mining, which can be predicted by the stochastic medium theory method. On the basis of analysis on the engineering practice of water solution mining, its corresponding parameters can be obtained from the in-site data of the belt water and sand filling mining in engineering analog approach.
基金Supported by the National Natural Science Foundation of China (51074168) the Specialized Fund for the Basic Research Operating Expenses Program of Central College(2010QZ03)
文摘The influence of gas drainage on float coal spontaneous combustion in the work face with "U" style ventilation was studied. Numerical simulation was used to compare the mutative law of steady flow and density field in the gob area under different drainage conditions by solving the equation set, including mass, momentum, and component transition. Consequently, the sequence of drainage effect and safety was obtained. The result manifests that the more effective the drainage pattern is, the easier float coal spontaneous combustion is caused due to air being guided into the depth of the gob area when the drainage position is arranged in the gas accumulation area. If the widened scope of oxidation zone exceeds the upper limit of the work face advancing speed, nitrogen injection should be applied to decrease the probability of spontaneous combustion. Then, the pipe laying drainage in the upper angle is most economical and safe compared with other drainage patterns when only the situation of gas accumulation is controlled in the upper angle. Finally, drainage pressure must not be too great. Otherwise the drainage density will decrease even if hazard is caused by back flow possibly happening in the return outlet when the drainage position is arranged near the work face.
文摘Mine drainage could be filtered and purified through goaf. This innovative technique shows merits, such as high treatment efficiency, remarkable economic benefit and extensive wastewater recycle use. However, it was detected that capacities of purifying mine drainage for goaf were decreased after a period of application. As a result, the effluent could not meet the standard of recycle water. To solve the problem, coagulant was considered to add into mine drainage reducing its high turbid degrees to certain level. After the preliminary flocculation treatment, mine drainage was piped into goaf to purify. In this way, the load of goaf was eased up. Its usage time was also prolonged. Therefore, this paper carried out the coagulation-flocculation jar test for mine drainage to discuss the flocculation parameters. By the experiment, 10 % iron trichloride is selected from four inorganic coagulants as the optimum coagulant. The optimum dose, PH value and sedirs6-7 and 25 min. Velocity mentation time are respectively 2 mL per 800 mL Wastewater gradient G during the process of mixing and reaction is 696 .And the value of GT is 6.264 × 10^5. The values of G and GT will supply the basis for the design of flocculation pool in the project. The flocculation parameters will be significant for the reference of practice.
文摘Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, and put forward a corresponding calculatingmodel demonstrated by practical example.The study provides mining areas,which are covered with a very thick Quaternary soil layer and abundant ground water, witha theoretical basis aimed at forecasting the settling of ground surface.
基金Project 2006CB202200 supported by the National Basic Research Program of Chinathe National Major Project of Ministry of Education (304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (NoIRT0656)
文摘This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.
基金National Science Support Plan of China(2006BAB16B04)
文摘Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.
文摘The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.
文摘For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distribution, heating law in goaf and to forecast the effects of fire protection by taking the fifth section face of the No. 18 coal seam in Nanshan Coal Mine as the basis for this study. The results demonstrate that if the vertical position of the drainage laneway is so low as to cause serious air leakage, a high oxygen concentration area exists in the return side of the goaf, and there is also a high temperature region which has faster heating rate than in the other areas. The effect of methane drainage on goal heating can be alleviated dramatically by simultaneous plugging and nitrogen injection. The results show that gas data in the return side of the goaf must be detected carefully in the work face, which is of similar drainage arrangement. Therefore, comprehensive fire protection measures should be carried out if conditions permit.
文摘The subsided water areas with different times of subsidence are chosen to monitor the physicochemical indexes and heavy metal elements. The results indicate that subsided water areas are polluted in different degree. Some physicochemical indexes of subsided water areas are increased with the development of the subsidence and are changed with the changing of the season. The concentration of As, Cd, Cu, Pb, Se, Zn of subsided water areas is less than national fishery, and surface water quality standards of China , except Hg. And the quality of subsided water hasn't been polluted by heavy metal seriously. Analyzing and appraising the quality of the subsided water can give a reasonable data as basis in using the subsided water resource.
文摘Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.