The site drilling packer permeability test and TEM to the 2100 workface in Gucheng coalmine determined the two-zone height under sublevel strip mining.The conclusion considers that the lying strata deterioration law o...The site drilling packer permeability test and TEM to the 2100 workface in Gucheng coalmine determined the two-zone height under sublevel strip mining.The conclusion considers that the lying strata deterioration law of the strip mining is similar to that of the sublevel mining.Thus, against that the actually measured data lacked, it is feasible to refer to the reservation of the waterproof coal pillar in the neighbor coalmine under sublevel situation.However, it is necessary to further launch the research on lying strata deterioration law under sublevel striping mining for the purpose of providing the right foundation for the layout of the workface not mined so far and the reservation of the waterproof coal pillar in the mining area.展开更多
The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts...The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.展开更多
The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single suppor...The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..展开更多
Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capaci...Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.展开更多
Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal ...Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal seams. Longwall face #32201 of the Bulianta Coal Mine, in the Shendong coalfield was selected as an industrial trail base, where field observations on ground-water levels were conducted when the working face was below a water-rich area. The space-time variation in the behavior of un-consolidated water levels in response to underground mining and its relation with of advance were observed through the field trials. The basic conditions for water preservation in mines are presented and the mechanisms of water preservation in mining analyzed, given the geological condition of two key strata and a severely weathered layer buried in the overburden. The field trails show that water preservation in mining shallow coal seams can be successful under suitable conditions, providing new technology for envi-ronmental protection in the desert coalfields of northwestern China.展开更多
Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thicknes...Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.展开更多
The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition f...The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.展开更多
Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the...Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the thick- ness statistics of the coal seam and the bedrock layer. The coal-bearing strata having thick, unconsoli- dated aquifers and thin bedrock located at the Taiping Coal Mine in Shandong province were taken as a geological prototype for subsequent study. The geological, hydro-geological and engineering character- istics of the thin bedrock were analyzed. An engineering geological model was than established. Overbur- den failure and the development of ''Three Zones'' were studied by physical model tests. The rupture pattern and rock failure were analyzed for mining conditions under thin bedrock. The height of the caving zone and the freely flowing water fractured zone of different mining thicknesses were separately calcu- lated. The results show that a mining thickness greater than 3.5 m causes the height of the freely flowing water fractured zone to be sufficient to touch the weathered zone and the bottom of the Quaternary sys- tem aquifer, to various degrees. This, then, would lead to water and sand inrush into the working face. Measures to prevent water and sand flow inrush disasters by eliminating the power source are put fore- word. A field dewatering scheme was designed and observational data were obtained. The dewatering project had an obvious effect and the water level at working face number 8309 dropped to a safe level. The average draw down of the groundwater was observed to be 7.86 m. This showed that the dewatering project played a role in decreasing the hydraulic pressure and ensuring safety mining.展开更多
The author presents the results being the effect of the analysis of innovative rate of individual technologies applied in opening up,development and extraction works which was carried out within the project:"scen...The author presents the results being the effect of the analysis of innovative rate of individual technologies applied in opening up,development and extraction works which was carried out within the project:"scenarios of technological development of hard coal extractive industry".After presentation of opening up,development and extraction technologies that are applied in Polish hard coal industry and their classification with regard to innovation degree the author describes those technologies in a detailed manner.He brings attention to the most effective systems for hard coal deposits’ opening up,development and their extraction,including the extraction of the residual coal.The attention is also paid to the safety level of the applied technologies.展开更多
基金Supported by Fujian Administration of Education for Science Research (JB08232)the State Key Development Program for Basic Research of China(2006CB202200)
文摘The site drilling packer permeability test and TEM to the 2100 workface in Gucheng coalmine determined the two-zone height under sublevel strip mining.The conclusion considers that the lying strata deterioration law of the strip mining is similar to that of the sublevel mining.Thus, against that the actually measured data lacked, it is feasible to refer to the reservation of the waterproof coal pillar in the neighbor coalmine under sublevel situation.However, it is necessary to further launch the research on lying strata deterioration law under sublevel striping mining for the purpose of providing the right foundation for the layout of the workface not mined so far and the reservation of the waterproof coal pillar in the mining area.
文摘The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.
文摘The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..
文摘Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.
基金supports for this work provided by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety (NoSKLCRSM08X2)the Jiangsu "333" High Qualified Talents, the National Natural Science Foundation of China (No50904063)the Scientific Research Foundation of China University of Mining & Technology (Nos.2008A003 and 2009A001)
文摘Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal seams. Longwall face #32201 of the Bulianta Coal Mine, in the Shendong coalfield was selected as an industrial trail base, where field observations on ground-water levels were conducted when the working face was below a water-rich area. The space-time variation in the behavior of un-consolidated water levels in response to underground mining and its relation with of advance were observed through the field trials. The basic conditions for water preservation in mines are presented and the mechanisms of water preservation in mining analyzed, given the geological condition of two key strata and a severely weathered layer buried in the overburden. The field trails show that water preservation in mining shallow coal seams can be successful under suitable conditions, providing new technology for envi-ronmental protection in the desert coalfields of northwestern China.
基金National Science Support Plan of China(2006BAB16B04)
文摘Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.
基金supported by the National Basic Research Program ofChina(No.2010CB202210)the National Natural Science Foundation of China(No.50874103)+1 种基金the Natural Science Foundation of Jiangsu Province(No.KB2008135)as well as by the Qinglan Project of Jiangsu Province
文摘The failure depth of the coal seam floor is one important consideration that must be kept in mind when mining is carried out above a confined aquifer.Determining the floor failure depth is the essential precondition for predicting the water-resisting ability of the floor.We have used a high-precision microseismic monitoring technique to overcome the limited amount of data available from field measurements. The failure depth of a coal seam floor,especially an inclined coal seam floor,may be more accurately estimated by monitoring the continuous,dynamic failure of the floor.The monitoring results indicate the failure depth of the coal seam floor near the workface conveyance roadway(the lower crossheading) is deeper and that the failure range is wider here compared to the coal seam floor near the return airway(the upper crossheading).The results of micro-seismic monitoring show that the dangerous area for water-inrush from the coal seam floor may be identified.This provides an important field measurement that helps ensure safe and highly efficient mining of the inclined coal seam above the confined aquifer at the Taoyuan Coal Mine.
基金provided by the National Natural Science Foundation of China (No.40802076)the China Postdoctoral Science Foundation (No.20110491476)
文摘Coal mining under thin bedrock or thick unconsolidated soil layers brings mining problems related to these special geological conditions. The meaning of the term ''thin bedrock'' is defined through the thick- ness statistics of the coal seam and the bedrock layer. The coal-bearing strata having thick, unconsoli- dated aquifers and thin bedrock located at the Taiping Coal Mine in Shandong province were taken as a geological prototype for subsequent study. The geological, hydro-geological and engineering character- istics of the thin bedrock were analyzed. An engineering geological model was than established. Overbur- den failure and the development of ''Three Zones'' were studied by physical model tests. The rupture pattern and rock failure were analyzed for mining conditions under thin bedrock. The height of the caving zone and the freely flowing water fractured zone of different mining thicknesses were separately calcu- lated. The results show that a mining thickness greater than 3.5 m causes the height of the freely flowing water fractured zone to be sufficient to touch the weathered zone and the bottom of the Quaternary sys- tem aquifer, to various degrees. This, then, would lead to water and sand inrush into the working face. Measures to prevent water and sand flow inrush disasters by eliminating the power source are put fore- word. A field dewatering scheme was designed and observational data were obtained. The dewatering project had an obvious effect and the water level at working face number 8309 dropped to a safe level. The average draw down of the groundwater was observed to be 7.86 m. This showed that the dewatering project played a role in decreasing the hydraulic pressure and ensuring safety mining.
文摘The author presents the results being the effect of the analysis of innovative rate of individual technologies applied in opening up,development and extraction works which was carried out within the project:"scenarios of technological development of hard coal extractive industry".After presentation of opening up,development and extraction technologies that are applied in Polish hard coal industry and their classification with regard to innovation degree the author describes those technologies in a detailed manner.He brings attention to the most effective systems for hard coal deposits’ opening up,development and their extraction,including the extraction of the residual coal.The attention is also paid to the safety level of the applied technologies.