降水量定量预报是精细化预报的要求之一,由于降水量的离散性和预报因子的非线性,用常规数理统计的方法做定量预报效果不理想。支持向量机(Support V ectorM ach ine简称SVM)对处理非线性关系的问题有强大能力,且具有在海量信息中巧妙提...降水量定量预报是精细化预报的要求之一,由于降水量的离散性和预报因子的非线性,用常规数理统计的方法做定量预报效果不理想。支持向量机(Support V ectorM ach ine简称SVM)对处理非线性关系的问题有强大能力,且具有在海量信息中巧妙提取所关注预报对象特征的能力。应用2002—2004年夏季T 213预报产品资料,用支持向量机回归原理做铜川降水量预报,从大量历史个例的数值预报产品信息中,提取有代表性的支持向量,建立铜川3个站未来2 d每12 h降水量预报方法。结果表明,该方法的试验数据预报结论与实况相关系数可达0.6,绝对差2.2,并经过检验数据检验,能够投入业务使用。展开更多
文摘降水量定量预报是精细化预报的要求之一,由于降水量的离散性和预报因子的非线性,用常规数理统计的方法做定量预报效果不理想。支持向量机(Support V ectorM ach ine简称SVM)对处理非线性关系的问题有强大能力,且具有在海量信息中巧妙提取所关注预报对象特征的能力。应用2002—2004年夏季T 213预报产品资料,用支持向量机回归原理做铜川降水量预报,从大量历史个例的数值预报产品信息中,提取有代表性的支持向量,建立铜川3个站未来2 d每12 h降水量预报方法。结果表明,该方法的试验数据预报结论与实况相关系数可达0.6,绝对差2.2,并经过检验数据检验,能够投入业务使用。