The one-pot assembly reaction of a trilacunary,lone-pair-containing[B-α-SbW9O33]9.precursor with Co2+ions in an aqueous medium led to the isolation of a novel{SbO3(H2O)3}bridging,dicobalt-substituted,sandwich-type tu...The one-pot assembly reaction of a trilacunary,lone-pair-containing[B-α-SbW9O33]9.precursor with Co2+ions in an aqueous medium led to the isolation of a novel{SbO3(H2O)3}bridging,dicobalt-substituted,sandwich-type tungstoantimonate{Co2Sb2(H2O)10[B-β-SbW9O33]2}^4–(1a).This compound was structurally characterized in the solid state by single-crystal X-ray diffraction,elemental analyses,thermogravimetric analysis,and IR spectroscopy.The most remarkable feature was that 1a comprises two trilacunary[B-β-SbW9O33]9^-fragments trapping a novel,centrally symmetric,rhomb-like{Co2Sb2}belt with 10 terminal water molecules.When combined with the photosensitizer[Ru(bpy)3]^2+and the sacrificial electron acceptor S2O82.,1a exhibited efficient catalytic activity for water oxidation with a remarkable turnover number(TON)of 193,initial turnover frequency(TOFinitial)of 5.3 s^-1,O2 yield of 30.8%,and quantum yield(ФQY)of 36.2%under light-driven conditions.展开更多
Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydr...Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydrogen at the photocathode of a PEC cell,the photoanode,where the oxygen evolution reaction occurs,should be systematically developed on priority.In particular,WO3 has been identified as one of the most promising photoanode materials owing to its narrow band gap and high valence band position.Its practical implementation,however,is still limited by excessive electron–hole recombination and poor water oxidation kinetics.This review presents the various strategies that have been studied for enhancing the PEC water oxidation performance of WO3,such as controlling the morphology,introducing defects,constructing a heterojunction,loading a cocatalyst,and exploiting the plasmonic effect.In addition,the possible future research directions are presented.展开更多
In order to realize resource utilization of industrial tungsten residue and treatment of heavy metal wastewater in mining and metallurgical area of south China,a novel ceramsite was prepared with the main raw material...In order to realize resource utilization of industrial tungsten residue and treatment of heavy metal wastewater in mining and metallurgical area of south China,a novel ceramsite was prepared with the main raw materials of diatomite and tungsten residue.The adsorption behavior of copper ions in solution on the ceramsite was investigated.Results indicated that the surface of the newly-developed ceramsite was rough and porous.There were lots of pores across the ceramsite from inner to outside.MnFe2O4 was one of the main components of the ceramsite.The Cu^2+adsorption capacity by the ceramsite reached 9.421 mg/g with copper removal efficiency of 94.21%at 303 K,initial Cu^2+concentration of 100 mg/L and dosage of 0.5 g after 300 min adsorption.With increase of ceramsite dosage,the total adsorption amount of Cu^2+increased,but the adsorption capacity decreased.The adsorption capacity increased with the increase of solution p H.The isothermal adsorption of Cu^2+by the ceramsite fitted the Freundlich model better.The adsorption mainly occurred on a heterogeneous surface,and was a favorable process.The adsorption process closely followed the pseudo-second kinetic equation.In initial stage of wastewater treatment,the adsorption process should be controlled mainly by diffusion,and the removal of Cu^2+can be improved by enhancing agitation.展开更多
The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation te...The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation test.The results of the saponification reaction test indicated that the optimal conditions for the saponification were stirring rate of 55 r/min,initial temperature of 40℃ and stirring time of 45 min.Meanwhile,the laboratory scale and industrial scale flotation experiments showed that the fatty acid salt synthesized by wastewater achieved an index comparable to fatty acid sodium synthesized by sodium hydroxide.As a consequence,it was feasible to replace sodium hydroxide with the wastewater from zeolite production for fatty acid saponification.The cross-border utilization of waste alkali liquids not only reduced environmental pollution,but also produced excellent economic benefits.展开更多
Peculiarities of the tungsten deposits drainage flow chemical composition formation, the development of which was ceased almost 40 years ago, have been considered. Migration peculiarities of ore components have been c...Peculiarities of the tungsten deposits drainage flow chemical composition formation, the development of which was ceased almost 40 years ago, have been considered. Migration peculiarities of ore components have been covered, and forms of their migration have been calculated. Inertial characteristics of the surface flow contamination are shown.展开更多
Oxygen isotope fractionation was experimentally studied in the quartz-wolframite-water systemf rom 200 to 420℃.The starting wolframite was synthexized in aqueous solutions of Na2WOR·2H2O+FeCl2·4H2O or MnCl2...Oxygen isotope fractionation was experimentally studied in the quartz-wolframite-water systemf rom 200 to 420℃.The starting wolframite was synthexized in aqueous solutions of Na2WOR·2H2O+FeCl2·4H2O or MnCl2·4H2O.The starting solutions range in salinity from 0 to 10 equivalent wt.% NaCl.Experiments were conducted in a gold-lined stainless steel autoclave,with filling degrees of about 50%.The results showed no significant difference in dquilibrium isotope fractionation between water and wolframite,ferberite and huebnerite at the same temperature(310℃).The equilibrium oxygen isotope fractionation factors of wolframite and water tend to be equal with increasing temperature above 370℃.but to increase significantly with decreasing temperature below 370℃.展开更多
The effects of temperature, ammonia concentration and ammonium carbonate concentration on the dissolving behavior of ammonium paratungstate were studied in(NH4)2CO3-NH3?H2O-H2O system. The results show that rising ...The effects of temperature, ammonia concentration and ammonium carbonate concentration on the dissolving behavior of ammonium paratungstate were studied in(NH4)2CO3-NH3?H2O-H2O system. The results show that rising temperature, prolonging duration, increasing ammonia concentration and decreasing ammonium carbonate concentration favor dissolving of ammonium paratungstate at temperature below 90 ℃, while the WO3 concentration decreases after a certain time at temperature above 100 ℃. Furthermore, the undissolved tungsten exists in the form of either APT·4 H2O below 90 ℃ or pyrochlore-type tungsten trioxide above 100℃. In dissolving process, the ammonium paratungstate dissolves into paratungstate ions followed by partially converting to tungstate ion, resulting in the coexistence of the both ions. This study may provide a new idea to exploit a novel technique for manufacturing ammonium paratungstate and pyrochlore-type tungsten trioxide.展开更多
Tungsten carbide and zeolite nanocomposite was prepared by combining a mechanochemical approach with a reduction and carbonization approach,using natural zeolite and ammonia metatungstate as precursors.The sample was ...Tungsten carbide and zeolite nanocomposite was prepared by combining a mechanochemical approach with a reduction and carbonization approach,using natural zeolite and ammonia metatungstate as precursors.The sample was characterized by X-ray diffraction and scanning electron microscope.The results showed that the crystal phase of the sample is composed of zeolite,monotungsten carbide and bitungsten carbide.The mass percentage and the crystallite diameter of tungsten carbide change along with the reacted time.Its electrocatalytic activity was measured with a microelectrode system with three electrodes.The results show that its electrocatalytic property is related to its crystal phase and the mass percentage of tungsten carbide,and its electrocatalytic activity is connected with the property of electrolyte,in which it is measured.Synergistic effect between tungsten carbide and zeolite is found during electrocatalysis.展开更多
Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies ...Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.展开更多
Polyquaternium-6 (PQ6) as the water-soluble polymer was used for complexing the anion forms of tungsten (Ⅵ) before ultrafiltration. Tungsten (Ⅵ)-PQ6 complex was retained by polysulfone hollow fiber ultrafiltration m...Polyquaternium-6 (PQ6) as the water-soluble polymer was used for complexing the anion forms of tungsten (Ⅵ) before ultrafiltration. Tungsten (Ⅵ)-PQ6 complex was retained by polysulfone hollow fiber ultrafiltration membrane in the complexation-ultrafiltration process. Effects of various operating parameters such as polymer metal ratio(PMR), pH and chloride ion concentration on permeate flux (J) and tungsten rejection coefficient (R) were investigated. The integration of four experiments including concentration, decomplexation, diafiltration and reuse of regenerated polymer was carried out. In the process of concentration, J declines slowly and R is about 1 at PMR of 3 and pH of 7. Tungsten concentration in the retentate increases linearly with volume concentration factor. Tungsten is concentrated efficiently with the membrane. The concentrated retentate was used further for the decomplexation. It takes about 6 min to reach the decomplexation equilibrium at chloride ion concentration of 50 mg·L-1 . The decomplexation percentage of tungsten (Ⅵ)-PQ6 complex reaches 56.1%. In the diafiltration process, tungsten (Ⅵ) can be extracted effectively by using 50 mg·L-1 chloride ion solution, and the purification of the regenerated PQ6 is acceptably satisfactory. The regenerated PQ6 was used to bind tungsten (Ⅵ) at various pH values. The binding capacity of the regenerated PQ6 is close to that of fresh PQ6, and the recovery percentage of binding capacity is higher than 90%.展开更多
The feasibility of rhenium (Re) production by irradiating tungsten (W) metal in a medium size fast reactor was evaluated by using a Monte Carlo code. The fast reactor can produce about 50 kilograms of Re per every...The feasibility of rhenium (Re) production by irradiating tungsten (W) metal in a medium size fast reactor was evaluated by using a Monte Carlo code. The fast reactor can produce about 50 kilograms of Re per every 3 years, which corresponds 10% of Japanese domestic production. The specific activity of Re can be reduced below the exemption level or even the natural Re level if W and osmium is separated after the irradiation. The use of ZrD1.7 moderator reduces the specific activity by half compared to that of ZrH1.7 case, and even the no moderator case is permissible to produce the production of Re which has lower specific reactivity than that of natural Re.展开更多
Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate.The effects of sodium tungstat...Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate.The effects of sodium tungstate on the coating thickness, mass gain,surface morphology and corrosion resistance were studied by eddy current instrument,electronic scales,scanning electron microscope and immersion tester.With the addition of sodium tungstate,the electrolytic conductivity increases and the final voltage decreases.The sodium tungstate has a minor effect on the coating thickness,but lightens the coating color.With increasing sodium tungstate concentration,the size of micropores on the coatings is enlarged and the corrosion resistance of the anodized samples decreases.展开更多
基金financially supported by the National Natural Science Foundation of China(21773096)the Fundamental Research Funds for the Central Universities(lzujbky-2018-k08)the Natural Science Foundation of Gansu Province(17JR5RA186)~~
文摘The one-pot assembly reaction of a trilacunary,lone-pair-containing[B-α-SbW9O33]9.precursor with Co2+ions in an aqueous medium led to the isolation of a novel{SbO3(H2O)3}bridging,dicobalt-substituted,sandwich-type tungstoantimonate{Co2Sb2(H2O)10[B-β-SbW9O33]2}^4–(1a).This compound was structurally characterized in the solid state by single-crystal X-ray diffraction,elemental analyses,thermogravimetric analysis,and IR spectroscopy.The most remarkable feature was that 1a comprises two trilacunary[B-β-SbW9O33]9^-fragments trapping a novel,centrally symmetric,rhomb-like{Co2Sb2}belt with 10 terminal water molecules.When combined with the photosensitizer[Ru(bpy)3]^2+and the sacrificial electron acceptor S2O82.,1a exhibited efficient catalytic activity for water oxidation with a remarkable turnover number(TON)of 193,initial turnover frequency(TOFinitial)of 5.3 s^-1,O2 yield of 30.8%,and quantum yield(ФQY)of 36.2%under light-driven conditions.
基金financially supported by the National Natural Science Foundation of China (21808189, 21663027)the Science and Technology Support Project of Gansu Province (1504GKCA027)+2 种基金the Program for Innovative Research Team (NWNULKQN-15-2)the Opening Project of Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control (GKLECPC-12)the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (LYJ18205)~~
文摘Photoelectrochemical(PEC)water splitting capable of reducing and oxidizing water into hydrogen and oxygen in a generation mode of spatial separation has gained extensive popularity.In order to effectively produce hydrogen at the photocathode of a PEC cell,the photoanode,where the oxygen evolution reaction occurs,should be systematically developed on priority.In particular,WO3 has been identified as one of the most promising photoanode materials owing to its narrow band gap and high valence band position.Its practical implementation,however,is still limited by excessive electron–hole recombination and poor water oxidation kinetics.This review presents the various strategies that have been studied for enhancing the PEC water oxidation performance of WO3,such as controlling the morphology,introducing defects,constructing a heterojunction,loading a cocatalyst,and exploiting the plasmonic effect.In addition,the possible future research directions are presented.
基金Project(51674305)supported by the National Natural Science Foundation of ChinaKey Project(1602FKDC007)supported by Science and Technology Program of Gansu Province,China+1 种基金Projects(2016YT03N101,2017A090905024)supported by Science and Technology Program of Guangdong Province,ChinaProject(NSFJ2015-K06)supported by Jiangxi University of Science and Technology,China
文摘In order to realize resource utilization of industrial tungsten residue and treatment of heavy metal wastewater in mining and metallurgical area of south China,a novel ceramsite was prepared with the main raw materials of diatomite and tungsten residue.The adsorption behavior of copper ions in solution on the ceramsite was investigated.Results indicated that the surface of the newly-developed ceramsite was rough and porous.There were lots of pores across the ceramsite from inner to outside.MnFe2O4 was one of the main components of the ceramsite.The Cu^2+adsorption capacity by the ceramsite reached 9.421 mg/g with copper removal efficiency of 94.21%at 303 K,initial Cu^2+concentration of 100 mg/L and dosage of 0.5 g after 300 min adsorption.With increase of ceramsite dosage,the total adsorption amount of Cu^2+increased,but the adsorption capacity decreased.The adsorption capacity increased with the increase of solution p H.The isothermal adsorption of Cu^2+by the ceramsite fitted the Freundlich model better.The adsorption mainly occurred on a heterogeneous surface,and was a favorable process.The adsorption process closely followed the pseudo-second kinetic equation.In initial stage of wastewater treatment,the adsorption process should be controlled mainly by diffusion,and the removal of Cu^2+can be improved by enhancing agitation.
基金Projects(51604302,51574282)supported by the National Natural Science Foundation of ChinaProject(2016RS2016)supported by the Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),China+1 种基金Project(2018zzts224)supported by the Postgraduate Independent Exploration and Innovation Project of Central South University,ChinaProject(2018TP1002)supported by the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources,China。
文摘The application of waste alkali liquids as a substitute of sodium hydroxide for the saponification to improve the collection performance of fatty acids was investigated by saponification reaction test and flotation test.The results of the saponification reaction test indicated that the optimal conditions for the saponification were stirring rate of 55 r/min,initial temperature of 40℃ and stirring time of 45 min.Meanwhile,the laboratory scale and industrial scale flotation experiments showed that the fatty acid salt synthesized by wastewater achieved an index comparable to fatty acid sodium synthesized by sodium hydroxide.As a consequence,it was feasible to replace sodium hydroxide with the wastewater from zeolite production for fatty acid saponification.The cross-border utilization of waste alkali liquids not only reduced environmental pollution,but also produced excellent economic benefits.
基金Supported by RF Ministry of IndustryScience, grant No.1566. 2003. 05.
文摘Peculiarities of the tungsten deposits drainage flow chemical composition formation, the development of which was ceased almost 40 years ago, have been considered. Migration peculiarities of ore components have been covered, and forms of their migration have been calculated. Inertial characteristics of the surface flow contamination are shown.
基金This projects was financially supported by the National Natural Science Foundation of China.
文摘Oxygen isotope fractionation was experimentally studied in the quartz-wolframite-water systemf rom 200 to 420℃.The starting wolframite was synthexized in aqueous solutions of Na2WOR·2H2O+FeCl2·4H2O or MnCl2·4H2O.The starting solutions range in salinity from 0 to 10 equivalent wt.% NaCl.Experiments were conducted in a gold-lined stainless steel autoclave,with filling degrees of about 50%.The results showed no significant difference in dquilibrium isotope fractionation between water and wolframite,ferberite and huebnerite at the same temperature(310℃).The equilibrium oxygen isotope fractionation factors of wolframite and water tend to be equal with increasing temperature above 370℃.but to increase significantly with decreasing temperature below 370℃.
基金Project(51274243) supported by the National Natural Science Foundation of China
文摘The effects of temperature, ammonia concentration and ammonium carbonate concentration on the dissolving behavior of ammonium paratungstate were studied in(NH4)2CO3-NH3?H2O-H2O system. The results show that rising temperature, prolonging duration, increasing ammonia concentration and decreasing ammonium carbonate concentration favor dissolving of ammonium paratungstate at temperature below 90 ℃, while the WO3 concentration decreases after a certain time at temperature above 100 ℃. Furthermore, the undissolved tungsten exists in the form of either APT·4 H2O below 90 ℃ or pyrochlore-type tungsten trioxide above 100℃. In dissolving process, the ammonium paratungstate dissolves into paratungstate ions followed by partially converting to tungstate ion, resulting in the coexistence of the both ions. This study may provide a new idea to exploit a novel technique for manufacturing ammonium paratungstate and pyrochlore-type tungsten trioxide.
基金Supported by the National Natural Science Foundation of China (21173193)the Natural Science Foundation of Zhejiang Province (Y4080209, Y406094)the Science Plan of Zhejiang Province (2007F70039)
文摘Tungsten carbide and zeolite nanocomposite was prepared by combining a mechanochemical approach with a reduction and carbonization approach,using natural zeolite and ammonia metatungstate as precursors.The sample was characterized by X-ray diffraction and scanning electron microscope.The results showed that the crystal phase of the sample is composed of zeolite,monotungsten carbide and bitungsten carbide.The mass percentage and the crystallite diameter of tungsten carbide change along with the reacted time.Its electrocatalytic activity was measured with a microelectrode system with three electrodes.The results show that its electrocatalytic property is related to its crystal phase and the mass percentage of tungsten carbide,and its electrocatalytic activity is connected with the property of electrolyte,in which it is measured.Synergistic effect between tungsten carbide and zeolite is found during electrocatalysis.
基金Project(2010CL04) supported by the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, ChinaProject(K-081025) supported by State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University,China
文摘Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.
基金Supported by the National Natural Science Foundation of China (20976040)Science and Technology Planning Project of Hunan Province of China (2009SK3036)
文摘Polyquaternium-6 (PQ6) as the water-soluble polymer was used for complexing the anion forms of tungsten (Ⅵ) before ultrafiltration. Tungsten (Ⅵ)-PQ6 complex was retained by polysulfone hollow fiber ultrafiltration membrane in the complexation-ultrafiltration process. Effects of various operating parameters such as polymer metal ratio(PMR), pH and chloride ion concentration on permeate flux (J) and tungsten rejection coefficient (R) were investigated. The integration of four experiments including concentration, decomplexation, diafiltration and reuse of regenerated polymer was carried out. In the process of concentration, J declines slowly and R is about 1 at PMR of 3 and pH of 7. Tungsten concentration in the retentate increases linearly with volume concentration factor. Tungsten is concentrated efficiently with the membrane. The concentrated retentate was used further for the decomplexation. It takes about 6 min to reach the decomplexation equilibrium at chloride ion concentration of 50 mg·L-1 . The decomplexation percentage of tungsten (Ⅵ)-PQ6 complex reaches 56.1%. In the diafiltration process, tungsten (Ⅵ) can be extracted effectively by using 50 mg·L-1 chloride ion solution, and the purification of the regenerated PQ6 is acceptably satisfactory. The regenerated PQ6 was used to bind tungsten (Ⅵ) at various pH values. The binding capacity of the regenerated PQ6 is close to that of fresh PQ6, and the recovery percentage of binding capacity is higher than 90%.
文摘The feasibility of rhenium (Re) production by irradiating tungsten (W) metal in a medium size fast reactor was evaluated by using a Monte Carlo code. The fast reactor can produce about 50 kilograms of Re per every 3 years, which corresponds 10% of Japanese domestic production. The specific activity of Re can be reduced below the exemption level or even the natural Re level if W and osmium is separated after the irradiation. The use of ZrD1.7 moderator reduces the specific activity by half compared to that of ZrH1.7 case, and even the no moderator case is permissible to produce the production of Re which has lower specific reactivity than that of natural Re.
基金Projects(GJJ08363,GJJ09573)supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate.The effects of sodium tungstate on the coating thickness, mass gain,surface morphology and corrosion resistance were studied by eddy current instrument,electronic scales,scanning electron microscope and immersion tester.With the addition of sodium tungstate,the electrolytic conductivity increases and the final voltage decreases.The sodium tungstate has a minor effect on the coating thickness,but lightens the coating color.With increasing sodium tungstate concentration,the size of micropores on the coatings is enlarged and the corrosion resistance of the anodized samples decreases.