There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms h...There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.展开更多
文摘There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.