A series of experiments has been done in a moderate-velocity cavitation tunnel to investigate the effects of attack angle change on hydrodynamic characters of supercavitation. Hydrodynamic characters of the aft sectio...A series of experiments has been done in a moderate-velocity cavitation tunnel to investigate the effects of attack angle change on hydrodynamic characters of supercavitation. Hydrodynamic characters of the aft section at various attack angles were compared. The investigation shows that hydrodynamic forces of the aft section are dependent of supercavity shapes at different attack angles,and the magnitude of hydrodynamic forces of the aft section varies with the change of attack angle. When the aft section is in the fully wetted case,the drag coefficient changes little. Lift and moment coefficients both increase with the increased attack angle,and the increase magnitude is not large. When the aft body planing is on the cavity boundary,the drag coefficient of nonzero attack angle is larger than that of zero attack angle,and the maximal lift and moment coefficients both vary obviously with the increased attack angle. In the case that the body is fully enveloped by cavity,the drag coefficient,lift coefficient and moment coefficient are nearly constant with the change of attack angles.展开更多
Knotless polyethylene(PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity...Knotless polyethylene(PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0?(parallel to flow) to 90?(perpendicular to flow) and current speeds from 40 cm s^(-1) to 130 cm s^(-1). It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50? and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.展开更多
In order to develop turbulent drag-reducing technology by using an environmentally friendly additive in a water-transporting system,the drag reducing characteristics in a non-ionic surfactant(Oleyldimethylamineoxide,O...In order to develop turbulent drag-reducing technology by using an environmentally friendly additive in a water-transporting system,the drag reducing characteristics in a non-ionic surfactant(Oleyldimethylamineoxide,ODMAO) dilute aqueous solution flowing in a circular pipe of 5 mm diameter have been experimentally investigated with an air-driven fluid resistance test device.The rheological characteristics of the solution have also been examined by a rheometer with a cone-plate flow cell.The results show that the ODMAO solutions are drag-reducing when concentration is 400 ppm or higher,that the critical Reynolds number corresponding to the maximum drag reduction rate increases with both concentration and temperature,and that the maximum drag reduction rate can reach up to 70% in the straight pipe.At low shear rates,the shear viscosity of ODMAO solutions with a relatively high drag-reduction behaves similarly to Newtonian fluids;at above a certain critical shear rate,it is firstly shear-thickening,then shear-thinning.Such shear-rate-dependent characteristics of the shear viscosity are attributed to the different transitions of micellar network structure induced by different shear rates.Relaxation of shear stress after removing an applied constant shear rate at which the solution is in the SIS(shear-induced structure) state is found to be well expressed by a 2-step Maxwell model with a tail relaxation time much shorter than that for a drag-reducing cationic surfactant,which indicates that for the ODMAO solution,a viscoelasticity as strong as a drag-reducing cationic surfactant is not needed to realize turbulent drag-reduction.展开更多
基金Sponsoed by the National Natural Science Foundation of China(Grant No.10832007)
文摘A series of experiments has been done in a moderate-velocity cavitation tunnel to investigate the effects of attack angle change on hydrodynamic characters of supercavitation. Hydrodynamic characters of the aft section at various attack angles were compared. The investigation shows that hydrodynamic forces of the aft section are dependent of supercavity shapes at different attack angles,and the magnitude of hydrodynamic forces of the aft section varies with the change of attack angle. When the aft section is in the fully wetted case,the drag coefficient changes little. Lift and moment coefficients both increase with the increased attack angle,and the increase magnitude is not large. When the aft body planing is on the cavity boundary,the drag coefficient of nonzero attack angle is larger than that of zero attack angle,and the maximal lift and moment coefficients both vary obviously with the increased attack angle. In the case that the body is fully enveloped by cavity,the drag coefficient,lift coefficient and moment coefficient are nearly constant with the change of attack angles.
基金the National High Technology Research and Development Program of China (No. 2012AA092302)the Shanghai Education Commission ‘Summit and Highland’ Discipline Construction for Fisheries Sciences (No. B2-5005-13-0001-5)+2 种基金the open funding for the Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources (No. A0203-16-2007-6)the Public Projects of Research on Technology and Application in Zhejiang Province (No. 2016C33083)the National Natural Science Foundation of China (No. 41506151)
文摘Knotless polyethylene(PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0?(parallel to flow) to 90?(perpendicular to flow) and current speeds from 40 cm s^(-1) to 130 cm s^(-1). It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50? and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.
基金supported by the Center of Natural Science and Technology of Japan
文摘In order to develop turbulent drag-reducing technology by using an environmentally friendly additive in a water-transporting system,the drag reducing characteristics in a non-ionic surfactant(Oleyldimethylamineoxide,ODMAO) dilute aqueous solution flowing in a circular pipe of 5 mm diameter have been experimentally investigated with an air-driven fluid resistance test device.The rheological characteristics of the solution have also been examined by a rheometer with a cone-plate flow cell.The results show that the ODMAO solutions are drag-reducing when concentration is 400 ppm or higher,that the critical Reynolds number corresponding to the maximum drag reduction rate increases with both concentration and temperature,and that the maximum drag reduction rate can reach up to 70% in the straight pipe.At low shear rates,the shear viscosity of ODMAO solutions with a relatively high drag-reduction behaves similarly to Newtonian fluids;at above a certain critical shear rate,it is firstly shear-thickening,then shear-thinning.Such shear-rate-dependent characteristics of the shear viscosity are attributed to the different transitions of micellar network structure induced by different shear rates.Relaxation of shear stress after removing an applied constant shear rate at which the solution is in the SIS(shear-induced structure) state is found to be well expressed by a 2-step Maxwell model with a tail relaxation time much shorter than that for a drag-reducing cationic surfactant,which indicates that for the ODMAO solution,a viscoelasticity as strong as a drag-reducing cationic surfactant is not needed to realize turbulent drag-reduction.