The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this regi...The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW).展开更多
Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Wate...Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60 dbar, which is thicker than that of CEs. The NPSTMW thicker than 150 dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The 'trapped depth' of the composite CE (AE) is 300 m (550 m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies.展开更多
基金the specical scientific research project for the welfare of the State Oceanic Administration for 2007.(No.200706022).
文摘The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW).
基金supported by the National Basic Research Program of China(Grant No.2012CB955602)the National Natural Science Foundation of China(Grant Nos.41076005 and 41176009)
文摘Based on the temperature and salinity from the Argo profiling floats and altimeter-derived geostrophic velocity anomaly (GVA) data in the western North Pacific during 2002-2011, the North Pacific Subtropical Mode Water (NPSTMW) distribution is investigated and cyclonic and anti-cyclonic eddies (CEs and AEs) are constructed to study the influence of their vertical structures on maintaining NPSTMW. Combining eddies identified by the GVA data and Argo profiling float data, it is found that the average NPSTMW thickness of AEs is about 60 dbar, which is thicker than that of CEs. The NPSTMW thicker than 150 dbar in AEs accounts for 18%, whereas that in CEs accounts for only 1%. About 3377 (3517) profiles, which located within one diameter of the nearest CEs (AEs) are used to construct the CE (AE). The composite AE traps low-PV water in the center and with a convex shape in the vertical section. The 'trapped depth' of the composite CE (AE) is 300 m (550 m) where the rotational velocity exceeds the transitional velocity. The present study suggests that the anticyclonic eddies are not only likely to form larger amounts of NPSTMW, but also trap more NPSTMW than cyclonic eddies.