为解决水上漂浮垃圾种类繁多、移动端算力有限、现有识别模型较复杂等原因导致的水上清洁船识别垃圾精度低、速度慢等问题,提出一种基于YOLOv5s(you only look once version5 small)网络模型的水上漂浮垃圾识别算法。该算法采用K-means...为解决水上漂浮垃圾种类繁多、移动端算力有限、现有识别模型较复杂等原因导致的水上清洁船识别垃圾精度低、速度慢等问题,提出一种基于YOLOv5s(you only look once version5 small)网络模型的水上漂浮垃圾识别算法。该算法采用K-means聚类算法调整边界框比例,提高检测精度;以渐进式学习方式EfficientNetv2模型替代YOLOv5s的主干部分,融合高效通道注意力(efficient channel attention,ECA)机制,减少模型复杂度,提高检测速度,同时增强模型的特征提取能力;引入平衡因子φ和归一化高斯Wasserstein距离(normalized Gaussian Wasserstein distance,NWD)度量对YOLOv5s的损失函数优化,降低模型对水上远距离漂浮垃圾的检测敏感性。自制数据集的测试实验结果显示,改进算法的mAP比YOLOv5s算法提高2.2%,模型的参数量下降20.34%,检测速度提高30.84%,表明改进算法具有优越性。展开更多
为了解决智能无人船水面漂浮物识别和定位精度不高的问题,提出了一种基于Faster R-CNN(Faster Regions with Convolutional Neural Network)的改进识别与定位算法(CA-Faster R-CNN).该方法采用Faster R-CNN算法对水面漂浮物进行初次识...为了解决智能无人船水面漂浮物识别和定位精度不高的问题,提出了一种基于Faster R-CNN(Faster Regions with Convolutional Neural Network)的改进识别与定位算法(CA-Faster R-CNN).该方法采用Faster R-CNN算法对水面漂浮物进行初次识别和定位,对输出的识别结果与定位框采用类别激活网络(Class Activation,CA)去除边界框,运用像素点来标注目标位置.实验结果表明,该算法具有较高的识别与定位精度,可用于水面漂浮物识别和定位.此外,该算法对于其他与水面漂浮物具有相似特征的小目标物体定位有一定的借鉴作用.展开更多
文摘为了解决智能无人船水面漂浮物识别和定位精度不高的问题,提出了一种基于Faster R-CNN(Faster Regions with Convolutional Neural Network)的改进识别与定位算法(CA-Faster R-CNN).该方法采用Faster R-CNN算法对水面漂浮物进行初次识别和定位,对输出的识别结果与定位框采用类别激活网络(Class Activation,CA)去除边界框,运用像素点来标注目标位置.实验结果表明,该算法具有较高的识别与定位精度,可用于水面漂浮物识别和定位.此外,该算法对于其他与水面漂浮物具有相似特征的小目标物体定位有一定的借鉴作用.