The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated...The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.展开更多
A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid bou...A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.展开更多
Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curv...Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen.展开更多
The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investig...The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investigate the hydrodynamic effect of orientation dimples, a series of experiments was carried out on a ring-on-ring test. Multi-pored faces were tested with different dimple inclination angles and slender ratios. Film thickness and frictional torque were measured under different conditions of load and rotation speed. Experimental results showed that the orientation dimple could produce obvious dynamic effect by change of the flow direction and the increasing dimple orientation leads to increase of the load capability. The hydrodynamic effect strongly depends on dimple orientation parameters such as inclination angle and slender ratio. A larger load capability can be available by increasing dimple orientation and rotation speed. Experimental results agreed well with the theory that orientation micro-pores can significantly improve hydrodynamic performance of surfaces.展开更多
基金supported by Changwon National University in 2010,Korea
文摘The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.
基金Supported by the Portuguese Foundation for Science and Technology under Grant No.PTDC/ECM/100686/2008
文摘A computer code based on the double-body potential flow model and the classic source panel method has been developed to study various problems of hydrodynamic interaction between ships and other objects with solid boundaries including the seabed. A peculiarity of the proposed implementation is the application of the so-called "moving-patch" method for simulating steady boundaries of large extensions. The method is based on an assumption that at any moment just the part of the boundary ("moving patch") which lies close to the interacting ship is significant for the near-field interaction. For a specific case of the fiat bottom, comparative computations were performed to determine optimal dimensions of the patch and of the constituting panels based on the trade-off between acceptable accuracy and reasonable efficiency. The method was applied to estimate the sway force on a ship hull moving obliquely across a dredged channel. The method was validated for a case of ship-to-ship interaction when tank data were available. This study also contains a description of a newly developed spline approximation algorithm necessary for creating consistent discretizations of ship hulls with various degrees of refinement.
文摘Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50805130, 50775206)the Zhejiang Nature Science Foundation of China (Grant Nos. Y1090620, R1090833)+1 种基金the Tribology Science Fund of State Key Laboratory of Tribology of China (Grant No. SKLTKF08B01)the Program of Young Leaders and Core Instructors of Disciplines in Science of Zhejiang University of Technology (Grant No. 102004829)
文摘The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investigate the hydrodynamic effect of orientation dimples, a series of experiments was carried out on a ring-on-ring test. Multi-pored faces were tested with different dimple inclination angles and slender ratios. Film thickness and frictional torque were measured under different conditions of load and rotation speed. Experimental results showed that the orientation dimple could produce obvious dynamic effect by change of the flow direction and the increasing dimple orientation leads to increase of the load capability. The hydrodynamic effect strongly depends on dimple orientation parameters such as inclination angle and slender ratio. A larger load capability can be available by increasing dimple orientation and rotation speed. Experimental results agreed well with the theory that orientation micro-pores can significantly improve hydrodynamic performance of surfaces.