期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于实际工况的燃料电池水气传输及相变规律研究
1
作者 王来华 代世勋 曹爱红 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期260-268,共9页
利用CFD软件建立二维多相质子交换膜燃料电池单电池模型,对不同工况下质子交换膜燃料电池内部水气传输及相变过程进行仿真。在试验验证及元无关性验证的基础上,分析起步工况、加速工况、急停工况下的质子交换膜燃料电池内部状态变化。... 利用CFD软件建立二维多相质子交换膜燃料电池单电池模型,对不同工况下质子交换膜燃料电池内部水气传输及相变过程进行仿真。在试验验证及元无关性验证的基础上,分析起步工况、加速工况、急停工况下的质子交换膜燃料电池内部状态变化。研究结果表明:当电流密度为1500 mA/cm^(2)时,质子交换膜燃料电池功率密度达到最大值654.9 mW/cm^(2);起步工况下,质子交换膜燃料电池内部反应会在达到额定功率10 s后逐渐达到平衡;加速工况下,三次方加速模式的最低液态水饱和度界面、水-气相界面的持续时间最长;急停工况下,质子交换膜燃料电池的突然停机会使得其仍保持与停机前相近的状态。 展开更多
关键词 质子交换膜燃料电池 饱和度 二维多模型 传输 水-气相界面
下载PDF
"Environmental phosphorylation"boosting photocatalytic CO_(2)reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces 被引量:5
2
作者 Qinghe Zhang Yang Xia Shaowen Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1667-1676,共10页
The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel ph... The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process. 展开更多
关键词 Photocatalytic CO_(2)reduction Hydrophobic surface Air-liquid-solid triphase interfaces Mass transport PHOSPHORYLATION
下载PDF
Adsorption structures of frothers at gas–liquid interface using DFT method 被引量:1
3
作者 ZHANG Yi-bing CHEN Jian-hua +1 位作者 LI Yu-qiong ZHANG Pei-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期536-549,共14页
Density functional theory (DFT) simulation was performed to investigate the adsorption mechanisms between frothers and gas–liquid interface. In water phase, the polar head group of the frother molecule was connected ... Density functional theory (DFT) simulation was performed to investigate the adsorption mechanisms between frothers and gas–liquid interface. In water phase, the polar head group of the frother molecule was connected with water molecules by hydrogen bonding, while the non-polar group showed that hydrophobic property and water molecules around it were repelled away. The adsorption of water molecules on single frother molecule suggests that the complexes of α-terpineol-7H2O, MIBC-7H2O and DF200-13H2O reach their stable structure. The hydration shell affects both the polar head group and the non-polar group. The liquid film drainage rate of DF200 is the lowest, while α-terpineol and MIBC are almost the same. The adsorption layer of frother molecules adsorbed at the gas-liquid interface reveals that the α-terpineol molecules are more neatly arranged and better distributed. The DF200 molecules are arranged much more loosely than MIBC molecules. These results suggest that the α-terpineol molecule layer could better block the diffusion of gas through the liquid film than DF200 and MIBC. The simulation results indicate that the foam stability of α-terpineol is the best, followed by DF200 and MIBC. 展开更多
关键词 frother water phase gas-liquid interface FOAMING DFT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部