[Objective] The aim was to analyze water and heat fluxes, CO2 fluxes and energy balance in wheat ecosystem in Luancheng County of Hebei Province. [Method] Based on data of water and heat flux, and CO2 fluxes, routine ...[Objective] The aim was to analyze water and heat fluxes, CO2 fluxes and energy balance in wheat ecosystem in Luancheng County of Hebei Province. [Method] Based on data of water and heat flux, and CO2 fluxes, routine meteorological and biomass data in Luancheng in 2008, water and heat fluxes, CO2 fluxes and energy balance in wheat ecosystem were explored. [Result] The results showed that latent and sensible heat and CO2 fluxes were of obvious daily and seasonal changes; latent and sensible heat fluxes shaped an inverted U in daily change, and CO2 fluxes were of a U-shape; daily flux peak differed significantly. Furthermore, the change of latent heat, sensible heat and CO2 fluxes were closely related to environ- mental factors. Detailedly, the three were sensitive to light intensity and net radiation, and correlation coefficients were 0.92, 0.66, 0.65 and 0.90, 0.69, 0.74, respectively. Besides, the fluxes, sensitive to temperature, proved better in sunny day, especially for latent flux which is more sensitive to water in soils after precipitation. In addition, closure degree of energy balance in wheat fields was 0.91 and non-closure, caused by measurement error and neglection of heat storage, was observed, too. What's more. closure degree differed in months and time periods within a day. [Conclusion] The research concluded water and heat fluxes, CO2 fluxes, transport mechanisms and concerning factors, providing scientific reference for revealing mechanism of evapo- ration and heat dissipation of canopy, relationship between photosynthesis and water use efficiencyand energy distribution mechanism.展开更多
To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide par...To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.展开更多
It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of...It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.展开更多
When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the inter...When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer.展开更多
When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting(POWS),the location of water oxidation sites is generally considered at the surface of the semiconducto...When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting(POWS),the location of water oxidation sites is generally considered at the surface of the semiconductor due to upward band-bending of n-type semiconductor which may ease the transfer of the photogenerated holes to the surface.However,this is not the case for Pt/SrTiO_(3),a model semiconductor based photocatalyst for POWS.It was found that the photogenerated holes are more readily accumulated at the interface between Pt cocatalyst and SrTiO_(3) photocatalyst as probed by photo-oxidative deposition of PbO_(2),indicating that the water oxidation sites are located at the interface between Pt and SrTiO_(3).Electron paramagnetic resonance and scanning transmission electron microscope studies suggest that the interfacial oxygen atoms between Pt and SrTiO_(3) in Pt/SrTiO_(3) after POWS are more readily lost to form oxygen vacancies upon vacuum heat treatment,regardless of Pt loading by photodeposition or impregnation methods,which may serve as additional support for the location of the active sites for water oxidation at the interface.Density functional theory calculations also suggest that the oxygen evolution reaction more readily occurs at the interfacial sites with the lowest overpotential.These experimental and theoretical studies reveal that the more active sites for water oxidation are located at the interface between Pt and SrTiO_(3),rather than on the surface of SrTiO_(3).Hence,the tailor design and control of the interfacial properties are extremely important for the achievement or improvement of the POWS on cocatalyst loaded semiconductor photocatalyst.展开更多
The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si- O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surfac...The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si- O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the -Si-CH3 groups around 2905 cm^-1 (symmetric stretch or SS mode) and 2957 ^-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 ^-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C-H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kcal/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant.展开更多
The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute or...The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.展开更多
On the basis of energy conservation law and surface pressure isotherm, the conformation energy changes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in pure phospholipid rnono...On the basis of energy conservation law and surface pressure isotherm, the conformation energy changes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in pure phospholipid rnonolayer at the air/water interface during compression are derived. The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software. Based on following assumptions: (1) the conformation energy change is mainly caused by the rotation of one special bond; (2) the atoms of glycerol near the water surface are active; (3) the rotation is motivated by hydrogen-bond action; (4) the rotation of bond is inertial, one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs. dihedral angle. The thickness of the simulated phospholipid monolayer is consistent with published experimental result. According to molecular areas at different states, the molecular orientations in the compressing process are also developed.展开更多
The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-a...The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.展开更多
We report the anisotropy effect and the relaxation dynamics of surface pressure of silica nanoparticle monolayer at the air-water interface. The anisotropy of surface pressure occurs when the water surface is fully co...We report the anisotropy effect and the relaxation dynamics of surface pressure of silica nanoparticle monolayer at the air-water interface. The anisotropy of surface pressure occurs when the water surface is fully covered by particles and becomes more prominent with the increase of surface concentration. Hence, the conception of surface tensor was proposed to characterize the monolayer properties. The dynamics of pressure relaxation involves three timescales which are related to the damping of surface fluctuation, rearrangement of particle rafts and particle motion inside each raft. The anisotropy decays when the layer is kept static and the process is accelerated remarkably by barrier oscillation. The underlying physics mechanism is also discussed in detail for the origin of pressure anisotropy and its decay dynamics.展开更多
Many technological applications require templates with nanoscale patterns.Block copolymer self-assembly is a method of choice for obtaining a large variety of such patterns,with greatest flexibility achieved when comb...Many technological applications require templates with nanoscale patterns.Block copolymer self-assembly is a method of choice for obtaining a large variety of such patterns,with greatest flexibility achieved when combined with a supramolecular approach.One of the ways to fabricate block copolymer templates is the Langmuir-Blodgett (LB) technique.Here,we briefly summarize recent work with LB films of polystyrene-poly(4-vinyl pyridine) (PS-P4VP) mixed with 3-n-pentade cylphenol (PDP),illustrating the different types of patterns possible and the principles governing them.One interesting pattern that can be easily achieved with this system is the so-called "nanostrand network",which,when used as a template for gold deposition,can produce double striped lines of gold.Here,we show how this pattern can be modified by acetone swelling to give rise to gold monolayer ribbons with internal structure.The results also suggest new insights into the early stages of morphology formation at the air/water interface.展开更多
Four achiral Cu(Ⅱ)-coordinated Schiff bases complexes containing aromatic structures were synthesized and their supramolecular assemblies at the air/water interface were investigated.All the compounds could be spread...Four achiral Cu(Ⅱ)-coordinated Schiff bases complexes containing aromatic structures were synthesized and their supramolecular assemblies at the air/water interface were investigated.All the compounds could be spread on water surface although they have no alkyl chains.The Schiff base complex molecules with naphthyl groups tended to form J-aggregate in the Langmuir-Blodgett(LB) films transferred from water surface.By investigation of atomic force microscopy,a multilayer film or three-dimensional structures were observed.It was interesting to note that the LB films of achiral compound Cu-NA with naphthyl segment and without methyl groups transferred from water surface showed chirality.The supramolecular chirality in the present LB films was suggested to be due to a cooperative stereoregular-stacking of the functional groups in a helical sense.This research work provides a helpful clue for regulating the nanostructures and supramolecular chiral assembly in organized films.展开更多
基金Supported by National Natural Science Foundation of China(31100359)A Project Funded by the Proiority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘[Objective] The aim was to analyze water and heat fluxes, CO2 fluxes and energy balance in wheat ecosystem in Luancheng County of Hebei Province. [Method] Based on data of water and heat flux, and CO2 fluxes, routine meteorological and biomass data in Luancheng in 2008, water and heat fluxes, CO2 fluxes and energy balance in wheat ecosystem were explored. [Result] The results showed that latent and sensible heat and CO2 fluxes were of obvious daily and seasonal changes; latent and sensible heat fluxes shaped an inverted U in daily change, and CO2 fluxes were of a U-shape; daily flux peak differed significantly. Furthermore, the change of latent heat, sensible heat and CO2 fluxes were closely related to environ- mental factors. Detailedly, the three were sensitive to light intensity and net radiation, and correlation coefficients were 0.92, 0.66, 0.65 and 0.90, 0.69, 0.74, respectively. Besides, the fluxes, sensitive to temperature, proved better in sunny day, especially for latent flux which is more sensitive to water in soils after precipitation. In addition, closure degree of energy balance in wheat fields was 0.91 and non-closure, caused by measurement error and neglection of heat storage, was observed, too. What's more. closure degree differed in months and time periods within a day. [Conclusion] The research concluded water and heat fluxes, CO2 fluxes, transport mechanisms and concerning factors, providing scientific reference for revealing mechanism of evapo- ration and heat dissipation of canopy, relationship between photosynthesis and water use efficiencyand energy distribution mechanism.
基金This research was supported by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX1-SW-01-15) and (KZCX1- SW-12)
文摘To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively.
文摘It is the traditional belief that sound transmission from water to the air is very weak due to a large contrast between air and water impedances. Recently, the enhanced sound transmission and anomalous transparency of air-water interface have been introduced. Anomalous transparency of air-water interface states that the sound generated by a submerged shallow depth monopole point source localized at depths less than 1/10 sound wavelength, can be transmitted into the air with omni-directional pattern. The generated sound has 35 times higher power compared to the classical ray theory prediction. In this paper, sound transmission through air-water interface for a localized underwater shallow depth source is examined. To accomplish this, two-phase coupled Helmholtz wave equations in two-phase media of air-water are solved by the commercial finite element based COMSOL Multiphysics software. Ratios of pressure amplitudes of different sound sources in two different underwater and air coordinates are computed and analyzed against non-dimensional ratio of the source depth (D) to the sound wavelength (λ). The obtained results are compared with the experimental data and good agreement is displayed.
文摘When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer.
文摘When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting(POWS),the location of water oxidation sites is generally considered at the surface of the semiconductor due to upward band-bending of n-type semiconductor which may ease the transfer of the photogenerated holes to the surface.However,this is not the case for Pt/SrTiO_(3),a model semiconductor based photocatalyst for POWS.It was found that the photogenerated holes are more readily accumulated at the interface between Pt cocatalyst and SrTiO_(3) photocatalyst as probed by photo-oxidative deposition of PbO_(2),indicating that the water oxidation sites are located at the interface between Pt and SrTiO_(3).Electron paramagnetic resonance and scanning transmission electron microscope studies suggest that the interfacial oxygen atoms between Pt and SrTiO_(3) in Pt/SrTiO_(3) after POWS are more readily lost to form oxygen vacancies upon vacuum heat treatment,regardless of Pt loading by photodeposition or impregnation methods,which may serve as additional support for the location of the active sites for water oxidation at the interface.Density functional theory calculations also suggest that the oxygen evolution reaction more readily occurs at the interfacial sites with the lowest overpotential.These experimental and theoretical studies reveal that the more active sites for water oxidation are located at the interface between Pt and SrTiO_(3),rather than on the surface of SrTiO_(3).Hence,the tailor design and control of the interfacial properties are extremely important for the achievement or improvement of the POWS on cocatalyst loaded semiconductor photocatalyst.
文摘The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si- O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the -Si-CH3 groups around 2905 cm^-1 (symmetric stretch or SS mode) and 2957 ^-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 ^-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C-H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kcal/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant.
基金Ⅵ. ACKNOWLEDGMENTS Hong-fei Wang thanks the support by the National Natural Science Foundation of China (No.20373076, No.20425309, and No.20533070) and the Ministry of Science and Technology of China (No.2007CB815205). Zhi-feng Cui thanks the support by the Natural Science Foundation of China (No.10674002) and the Natural Science Foundation of Anhui Province (No.ZD2007001-1).
文摘The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.
基金Supported by the National Natural Science Foundation of China (20876047).
文摘On the basis of energy conservation law and surface pressure isotherm, the conformation energy changes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in pure phospholipid rnonolayer at the air/water interface during compression are derived. The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software. Based on following assumptions: (1) the conformation energy change is mainly caused by the rotation of one special bond; (2) the atoms of glycerol near the water surface are active; (3) the rotation is motivated by hydrogen-bond action; (4) the rotation of bond is inertial, one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs. dihedral angle. The thickness of the simulated phospholipid monolayer is consistent with published experimental result. According to molecular areas at different states, the molecular orientations in the compressing process are also developed.
文摘The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.
基金supported by the NPU Foundation for Fundamental Research (Grant No. NPU-FFR-JC20100242)
文摘We report the anisotropy effect and the relaxation dynamics of surface pressure of silica nanoparticle monolayer at the air-water interface. The anisotropy of surface pressure occurs when the water surface is fully covered by particles and becomes more prominent with the increase of surface concentration. Hence, the conception of surface tensor was proposed to characterize the monolayer properties. The dynamics of pressure relaxation involves three timescales which are related to the damping of surface fluctuation, rearrangement of particle rafts and particle motion inside each raft. The anisotropy decays when the layer is kept static and the process is accelerated remarkably by barrier oscillation. The underlying physics mechanism is also discussed in detail for the origin of pressure anisotropy and its decay dynamics.
基金supported by the Natural Sciences and Engineering Council of Canada (NSERC)the Fonds de recherches du Québec-Nature et Technologies (FQRNT)
文摘Many technological applications require templates with nanoscale patterns.Block copolymer self-assembly is a method of choice for obtaining a large variety of such patterns,with greatest flexibility achieved when combined with a supramolecular approach.One of the ways to fabricate block copolymer templates is the Langmuir-Blodgett (LB) technique.Here,we briefly summarize recent work with LB films of polystyrene-poly(4-vinyl pyridine) (PS-P4VP) mixed with 3-n-pentade cylphenol (PDP),illustrating the different types of patterns possible and the principles governing them.One interesting pattern that can be easily achieved with this system is the so-called "nanostrand network",which,when used as a template for gold deposition,can produce double striped lines of gold.Here,we show how this pattern can be modified by acetone swelling to give rise to gold monolayer ribbons with internal structure.The results also suggest new insights into the early stages of morphology formation at the air/water interface.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20903078,21207112)the Natural Science Foundation of Hebei Province (Grant No. B2012203060)+4 种基金the China Postdoctoral Science Foundation (Grant Nos. 2011M500540,2012M510770)the Support Program for Hundred Excellent Innovation Talents from Universities and Colleges of Hebei Province (Grant No. CPRC020)the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province (Grant No. Y2011113)the Scientific Research Foundation for Returned Overseas Chinese Scholars of Hebei Province (Grant No.2011052)the Open Foundation of State Key Laboratory of Solid Lubrication (Grant No. 1002)
文摘Four achiral Cu(Ⅱ)-coordinated Schiff bases complexes containing aromatic structures were synthesized and their supramolecular assemblies at the air/water interface were investigated.All the compounds could be spread on water surface although they have no alkyl chains.The Schiff base complex molecules with naphthyl groups tended to form J-aggregate in the Langmuir-Blodgett(LB) films transferred from water surface.By investigation of atomic force microscopy,a multilayer film or three-dimensional structures were observed.It was interesting to note that the LB films of achiral compound Cu-NA with naphthyl segment and without methyl groups transferred from water surface showed chirality.The supramolecular chirality in the present LB films was suggested to be due to a cooperative stereoregular-stacking of the functional groups in a helical sense.This research work provides a helpful clue for regulating the nanostructures and supramolecular chiral assembly in organized films.