[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga,...[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.展开更多
Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynami...Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.展开更多
文摘[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.
基金Project (2011BAE22B03) supported by National Key Technologies R&D Program of ChinaProject (2011DFA50906) supported by the International S&T Cooperation Program of China
文摘Magnesium alloys can be developed as anode materials for seawater activated batteries. The electrochemical properties of AZ31, AP65 and Mg-3%Ga-2%Hg alloy anodes discharged in seawater were studied. The potentiodynamic polarization shows that the Mg-3%Ga-2%Hg alloy provides more negative corrosion potentials than AZ31 or AP65 alloy. The galvanostatic discharge results show that the Mg-3%Ga-2%Hg alloy exhibits good electrochemical properties as anodes in seawater. And the EIS studies reveal that the magnesium alloy anode/seawater interfacial process is determined by an activation controlled reaction. The Mg3Hg and Mg21Ga5Hg3 phases in Mg-3%Ga-2%Hg alloy improve its electrochemical properties better than the Mg17(Al,Zn)12 phase in AZ31 and Mg(Pb) solid solution phase in AP65 alloys.