Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 y...Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 years and projected for the near future. The distr/bution patterns and development mechanisms of the permafrost and marshes have been examined both in theories and in field observations, in order to better understand the symbiosis of permafrost and marshes. The permafrost and marshes in the Da and Xiao Hinggan Mountains display discernible zonations in latitude and elevation. The marsh vegetation canopy, litter and peat soil have good thermal insulation properties for the underlying permafrost, resulting in a thermal offset of 3 ℃ to 4℃ and subsequently suppressing soil temperature. In addition, the much higher thermal conductivity of frozen and ice-rich peat in the active layer is conducive to the development or in favor of the protection of permafrost due to the semi-conductor properties of the soils overlying the permafrost. On the other hand, because permafrost is almost impervious, the osmosis of water in marsh soils can be effectively reduced, timely providing water supplies for helophytes growth or germination in spring. In the Da and Xiao Hinggan Mountains, the permafrost degradation has been accelerating due to the marked climate warming, ever increasing human activities, and the resultant eco-environmental changes. Since the permafrost and marsh environments are symbiotic and interdependent, they need to be managed or protected in a well-coordinated and integrated way.展开更多
On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafros...On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.展开更多
Continuing climate changes are strongly associated with status of water, threatening the majority of ecosystems, including the grass ecosystem. The climate changes primarily affect the botanical composition of grassla...Continuing climate changes are strongly associated with status of water, threatening the majority of ecosystems, including the grass ecosystem. The climate changes primarily affect the botanical composition of grassland that is subsequently determined by production of above-ground phytomass which is used like feed for the ruminants. In our field experiment we assessed the impact of climate changes on grass ecosystem during the long-term period (23 years). We obtained a picture of the preceding development of botanical composition in this stand, due to the assumption that expected climate changes are going to disturb the botanical composition of grassland especially in the grass biome. From the obtained results follows the significant change in botanical composition in grass-herbaceous vegetation with the low share of legumes. It is not possible to confirm strict relation between precipitation during vegetation season and the share of individual botanical group. Analysis of long-term development of the botanical composition of monitored grassland influenced by different pratotechnical interventions demonstrated the significant flexibility this plant community in the times of changing climatic conditions.展开更多
This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. T...This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. To achieve this, time domain IP (induced polarization) and SP (self-potential) methods were adopted using VES (vertical electrical sounding) technique with 49 stations sounded. The result of the interpreted and analyzed measured data shows that the area is underlain by two to five subsurface layers. These layers are top soil, laterite, weathered basement complex rocks, fractured basement complex rocks and fresh basement complex rocks. The aquiferous zone of the study area occurs in the weathered and fractured basements and its thickness ranges from 1.44 m to 70.157 m while the overburden thickness lies between 1.6 m and 72.104 m. SP values were plotted against depths of investigation in order to identify areas with greater depth of flow in the study area. From the analysis of the overburden thickness, aquifer thickness and SP values, the most favorable regions for groundwater exploitation were found around VES 6, 11, 13, 19, 26, 38, 44 and 48. The investigation also provides information about the subsurface condition with regards to engineering construction and safe place for refuse dumping in order to avoid groundwater contamination.展开更多
Microbiological investigation of the fossil animals preserved in permafrost represents obvious interest for science. Lack of data in this sphere gives even greater importance to any findings giving us opportunity to l...Microbiological investigation of the fossil animals preserved in permafrost represents obvious interest for science. Lack of data in this sphere gives even greater importance to any findings giving us opportunity to learn more about remote past of microorganisms. In this respect, preserved remains of fossil are considered as unique biological materials for scientific investigations. Bacillus bacteria strains isolated from the paleomicrobiota of mammoth fauna are not only have high durability (20-30 thousand of years) in permafrost, but are still able to produce biologically active substances. Strains of bacteria of the genus Bacillus, isolated from the tissues of the representatives of the mammoth fauna have strong antagonistic properties to hemolytic streptococci--Streptococcus equi, pathogenic for animals--Salmonella abortus equi, also toxigenic micromycetes genera Aspergillus, Alternuria, Penicillum and fungal pathogens of plant diseases--Botrytis cimeria and Fuzarium oxysporium. The strains of bacteria of the genus Bacillus are not pathogenic to plants and animals, but initially resistant to wide range of antibiotics. Dominance strains of Bacillus bacteria, producing strong bacteriocins in the soft tissues of fossil animals, contributing to their long cryo bio conservation. In addition, bacterial strains of Bacillus subtilis, isolated from paleo microbiota have strong oxidizing properties. Microbiota of fossils preserved in permafrost of Yakutia is of particular interest for microbiology and modem biotechnology.展开更多
Current communication technologies have provided new modalities for students to contact professors outside of the normal office settings and regulated office hours traditionally found in higher education. This study c...Current communication technologies have provided new modalities for students to contact professors outside of the normal office settings and regulated office hours traditionally found in higher education. This study concentrates on the faculty perceptions of how the usage of e-mail and cell phones has changed interactions with students over the past decade. General levels of usage are analyzed as well as correlation to curricular disciplines, An online survey of faculty members at Indiana University of Pennsylvania found maior changes in the type and frequency of contact between professors and students as well as a shift from personal contact to e-mail and telephone usage. The expanded level of communication opportunities has placed faculty in the position of having to extend direct student-oriented time outside of the classroom, while continuing to maintain academic scholarship and other professional responsibilities.展开更多
In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a ...In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.展开更多
This paper considers the design of EMAT (Electro-Magnetic Acoustic Transducer) based on numerical simulation. The EMAT consists of an exiting coil and two permanent magnets, which transmits the ultrasonic wave by th...This paper considers the design of EMAT (Electro-Magnetic Acoustic Transducer) based on numerical simulation. The EMAT consists of an exiting coil and two permanent magnets, which transmits the ultrasonic wave by the Lorentz force between the eddy current and the static magnetic field by the magnets. From the experimental result on self-prepared EMATs, the intensity and the directivity of the transmitted wave depend on the widths of the coil and the magnets. By means of EEM analysis the authors attempt to determine the optimal values of the above widths such that both the intensity and the directivity achieve the maximum or allowable performance.展开更多
A type of authigenic pyrites that fully fill or semi-fill the rock fractures of drillholes with gas hydrate anomalies are found in the Qilian Mountain permafrost; this type of pyrite is known as "fracture-filling" p...A type of authigenic pyrites that fully fill or semi-fill the rock fractures of drillholes with gas hydrate anomalies are found in the Qilian Mountain permafrost; this type of pyrite is known as "fracture-filling" pyrite. The occurrence of "fracture-filling" pyrite has a certain similarity with that of the hydrate found in this region, and the pyrite is generally concentrated in the lower part of the hydrate layer or the hydrate anomaly layer. The morphology, trace elements, rare earth elements, and sulfur isotope analyses of samples from drillhole DK-6 indicate that the "fracture-filling" pyrites are dominated by cubic ones mainly aligned in a step-like fashion along the surfaces of rock fractures and are associated with a circular structure, lower Co/Ni and Sr/Ba, lower ZREE, higher LREE, significant Eu negative anomalies, and 634ScDT positive bias. In terms of the pyrites' unique crys- tal morphology and geochemical characteristics and their relationship with the hydrate layers or abnormal layers, they are closely related with the accumulation system of the gas hydrate in the Qilian Mountain permafrost. As climate change is an important factor in affecting the stability of the gas hydrate, formation of fracture-filling pyrites is most likely closely related to the secondary change of the metastable gas hydrate under the regional climate warming. The distribution intensity of these py- rites indicates that when the gas hydrate stability zone (GHSZ) is narrowing, the hydrate decomposition at the bottom of the GHSZ is stronger than that at the top of the GHSZ, whereas the hydrate decomposition within the GHSZ is relatively weak. Thus, the zone between the shallowest and the deepest distribution of the fracture-filling pyrite recorded the largest possible original GHSZ.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40701031,40225001,J0630966)3rd-term Knowledge Innovation Program of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences (No. O650445)
文摘Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountains has become a great concern as more human activities and pronounced climate warming were observed during the past 30 years and projected for the near future. The distr/bution patterns and development mechanisms of the permafrost and marshes have been examined both in theories and in field observations, in order to better understand the symbiosis of permafrost and marshes. The permafrost and marshes in the Da and Xiao Hinggan Mountains display discernible zonations in latitude and elevation. The marsh vegetation canopy, litter and peat soil have good thermal insulation properties for the underlying permafrost, resulting in a thermal offset of 3 ℃ to 4℃ and subsequently suppressing soil temperature. In addition, the much higher thermal conductivity of frozen and ice-rich peat in the active layer is conducive to the development or in favor of the protection of permafrost due to the semi-conductor properties of the soils overlying the permafrost. On the other hand, because permafrost is almost impervious, the osmosis of water in marsh soils can be effectively reduced, timely providing water supplies for helophytes growth or germination in spring. In the Da and Xiao Hinggan Mountains, the permafrost degradation has been accelerating due to the marked climate warming, ever increasing human activities, and the resultant eco-environmental changes. Since the permafrost and marsh environments are symbiotic and interdependent, they need to be managed or protected in a well-coordinated and integrated way.
基金supported by the National Natural Science Foundation Program of China on"Formation mechanisms and mitigative measures for thaw settlement of foundation soils of the China-Russia Crude Oil Pipeline"(Grant No.41171055)the State Key Laboratory of Frozen Soils Engineering Research Projects of China on"Monitoring on thaw settlement of permafrost around the China-Russia Crude Oil Pipeline"(Grant No.SKLFSE-ZY-11)and"Research on isotope tracing and radar detection of permafrost along the China-Russia Crude Oil Pipeline route"(Grant No.SKLFSE-201302)
文摘On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.
文摘Continuing climate changes are strongly associated with status of water, threatening the majority of ecosystems, including the grass ecosystem. The climate changes primarily affect the botanical composition of grassland that is subsequently determined by production of above-ground phytomass which is used like feed for the ruminants. In our field experiment we assessed the impact of climate changes on grass ecosystem during the long-term period (23 years). We obtained a picture of the preceding development of botanical composition in this stand, due to the assumption that expected climate changes are going to disturb the botanical composition of grassland especially in the grass biome. From the obtained results follows the significant change in botanical composition in grass-herbaceous vegetation with the low share of legumes. It is not possible to confirm strict relation between precipitation during vegetation season and the share of individual botanical group. Analysis of long-term development of the botanical composition of monitored grassland influenced by different pratotechnical interventions demonstrated the significant flexibility this plant community in the times of changing climatic conditions.
文摘This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. To achieve this, time domain IP (induced polarization) and SP (self-potential) methods were adopted using VES (vertical electrical sounding) technique with 49 stations sounded. The result of the interpreted and analyzed measured data shows that the area is underlain by two to five subsurface layers. These layers are top soil, laterite, weathered basement complex rocks, fractured basement complex rocks and fresh basement complex rocks. The aquiferous zone of the study area occurs in the weathered and fractured basements and its thickness ranges from 1.44 m to 70.157 m while the overburden thickness lies between 1.6 m and 72.104 m. SP values were plotted against depths of investigation in order to identify areas with greater depth of flow in the study area. From the analysis of the overburden thickness, aquifer thickness and SP values, the most favorable regions for groundwater exploitation were found around VES 6, 11, 13, 19, 26, 38, 44 and 48. The investigation also provides information about the subsurface condition with regards to engineering construction and safe place for refuse dumping in order to avoid groundwater contamination.
文摘Microbiological investigation of the fossil animals preserved in permafrost represents obvious interest for science. Lack of data in this sphere gives even greater importance to any findings giving us opportunity to learn more about remote past of microorganisms. In this respect, preserved remains of fossil are considered as unique biological materials for scientific investigations. Bacillus bacteria strains isolated from the paleomicrobiota of mammoth fauna are not only have high durability (20-30 thousand of years) in permafrost, but are still able to produce biologically active substances. Strains of bacteria of the genus Bacillus, isolated from the tissues of the representatives of the mammoth fauna have strong antagonistic properties to hemolytic streptococci--Streptococcus equi, pathogenic for animals--Salmonella abortus equi, also toxigenic micromycetes genera Aspergillus, Alternuria, Penicillum and fungal pathogens of plant diseases--Botrytis cimeria and Fuzarium oxysporium. The strains of bacteria of the genus Bacillus are not pathogenic to plants and animals, but initially resistant to wide range of antibiotics. Dominance strains of Bacillus bacteria, producing strong bacteriocins in the soft tissues of fossil animals, contributing to their long cryo bio conservation. In addition, bacterial strains of Bacillus subtilis, isolated from paleo microbiota have strong oxidizing properties. Microbiota of fossils preserved in permafrost of Yakutia is of particular interest for microbiology and modem biotechnology.
文摘Current communication technologies have provided new modalities for students to contact professors outside of the normal office settings and regulated office hours traditionally found in higher education. This study concentrates on the faculty perceptions of how the usage of e-mail and cell phones has changed interactions with students over the past decade. General levels of usage are analyzed as well as correlation to curricular disciplines, An online survey of faculty members at Indiana University of Pennsylvania found maior changes in the type and frequency of contact between professors and students as well as a shift from personal contact to e-mail and telephone usage. The expanded level of communication opportunities has placed faculty in the position of having to extend direct student-oriented time outside of the classroom, while continuing to maintain academic scholarship and other professional responsibilities.
文摘In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.
文摘This paper considers the design of EMAT (Electro-Magnetic Acoustic Transducer) based on numerical simulation. The EMAT consists of an exiting coil and two permanent magnets, which transmits the ultrasonic wave by the Lorentz force between the eddy current and the static magnetic field by the magnets. From the experimental result on self-prepared EMATs, the intensity and the directivity of the transmitted wave depend on the widths of the coil and the magnets. By means of EEM analysis the authors attempt to determine the optimal values of the above widths such that both the intensity and the directivity achieve the maximum or allowable performance.
基金supported by National Natural Science Foundation of China(Grant Nos.41102021,41202099)National Special Research Fund(Grant No.GZHL20110308)
文摘A type of authigenic pyrites that fully fill or semi-fill the rock fractures of drillholes with gas hydrate anomalies are found in the Qilian Mountain permafrost; this type of pyrite is known as "fracture-filling" pyrite. The occurrence of "fracture-filling" pyrite has a certain similarity with that of the hydrate found in this region, and the pyrite is generally concentrated in the lower part of the hydrate layer or the hydrate anomaly layer. The morphology, trace elements, rare earth elements, and sulfur isotope analyses of samples from drillhole DK-6 indicate that the "fracture-filling" pyrites are dominated by cubic ones mainly aligned in a step-like fashion along the surfaces of rock fractures and are associated with a circular structure, lower Co/Ni and Sr/Ba, lower ZREE, higher LREE, significant Eu negative anomalies, and 634ScDT positive bias. In terms of the pyrites' unique crys- tal morphology and geochemical characteristics and their relationship with the hydrate layers or abnormal layers, they are closely related with the accumulation system of the gas hydrate in the Qilian Mountain permafrost. As climate change is an important factor in affecting the stability of the gas hydrate, formation of fracture-filling pyrites is most likely closely related to the secondary change of the metastable gas hydrate under the regional climate warming. The distribution intensity of these py- rites indicates that when the gas hydrate stability zone (GHSZ) is narrowing, the hydrate decomposition at the bottom of the GHSZ is stronger than that at the top of the GHSZ, whereas the hydrate decomposition within the GHSZ is relatively weak. Thus, the zone between the shallowest and the deepest distribution of the fracture-filling pyrite recorded the largest possible original GHSZ.