A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the b...A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless s...A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.展开更多
Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of...Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of overheating. To predict the performance of the TLMs accurately, a multi-physics analysis approach was proposed. Specifically, it considered the coupling effects amongst the electromagnetic and the thermal models of the TLMs, as well as the fluid model of the surrounding air. To reduce computation cost, both the electromagnetic and the thermal models were based on lumped-parameter methods. Only a minimum set of numerical computation(computational fluid dynamics, CFD) was performed to model the complex fluid behavior. With the proposed approach, both steady state and transient state temperature distributions, thermal rating and permissible load can be predicted. The validity of this approach is verified through the experiment.展开更多
In order to obtain the primary parameters and operating characteristics of a DC motor without directly measuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire both th...In order to obtain the primary parameters and operating characteristics of a DC motor without directly measuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire both the dynamic and static data of armature current to establish the performance of a DC permanent magnet motor. The accuracy and validity of this virtual test system proposed were verified by comparing the measurements made with the system proposed with the measurements made with conventional torque meters. It is concluded from the results of comparison that from the mathematic model established for the DC permant magnet motors, both major parameters and operating characteristics can be directly established for the DC motors without measuring their torques and rotational speed, a perfect on line measurement and test system has been established for the DC permanent magnet motors using the theory of virtual test system. The system proposed features shorter test time, higher efficiency and lower cost.展开更多
The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coi...The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design.Changing optimal current density is verified whenever the design parameters of the motor are altered.The design parameters of the motor were applied to thrust calculation.In this way,the optimal model,which is a reversal of the existing design method,is deduced.The results were compared with the experimental data to verify their validity.When the convection heat transfer coefficient is applied to other models,the results of the analysis and test values show good concordance.The method proposed has some limitations.展开更多
Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport...Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport system, we propose parallel synchronous drive of used the PM-LSM (permanent magnet linear synchronous motor). It can pass luggage without having to stop the working. When you establish "parallel synchronous drive", a motor follows the other motor. In our laboratory, one of the motors is called "master motor" and the other motor called "slave motor". The master motor's speed and position pass slave motor then establish parallel synchronous drive. Therefore, slave motor requires high-responsive and precision that follows the master motor. This paper focuses on the control of the slave motor.展开更多
In this article, the 2D transient FEM has been used to analyze the dynamic process of the three phase LS-PMSM running characteristic. By verifying it through the experiment, we obtain the conclusion that the simulatio...In this article, the 2D transient FEM has been used to analyze the dynamic process of the three phase LS-PMSM running characteristic. By verifying it through the experiment, we obtain the conclusion that the simulation result is consistent with the experiment result. At the same time, by analyzing the situation of the magnetic bridge, we also obtain the result that the EMF waves are changing with the situation of the magnetic poles on and we can optimize the motor’s structure at the same time.展开更多
In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with perman...In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.展开更多
In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end e...In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.展开更多
A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torqu...A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torque waveforms of the prototype motor when staggering two stators are analyzed. The method that can reduce torque ripple making use of the structure features of this motor is investigated. The results of numerical calculation and experiment indicate that designing motor with this kind of structure is a good scheme for increasing the power density.展开更多
The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using ...The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle.展开更多
DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control ...DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control based on the SVM (space vector modulation) for IPMSM (interior permanent magnet synchronous motor) drive. Two PI (proportional-integral) controllers regulate the flux and torque, respectively, and the inverter is controlled by the SVM technique in the proposed DTC system. Simulation results show that the performance of the proposed DTC system has been improved with respect to the conventional DTC. The DTC system can effectively reduce the flux and torque ripples.展开更多
文摘A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.
基金Project(2015BAI03B00)supported by the National Key Technology R&D Program of ChinaProject(Z141100000514015)supported by Science and Technology Planning Program of Beijing,ChinaProject(SKLT12A03)supported by Tribology Science Fund of State Key Laboratory of Tribology,China
文摘Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of overheating. To predict the performance of the TLMs accurately, a multi-physics analysis approach was proposed. Specifically, it considered the coupling effects amongst the electromagnetic and the thermal models of the TLMs, as well as the fluid model of the surrounding air. To reduce computation cost, both the electromagnetic and the thermal models were based on lumped-parameter methods. Only a minimum set of numerical computation(computational fluid dynamics, CFD) was performed to model the complex fluid behavior. With the proposed approach, both steady state and transient state temperature distributions, thermal rating and permissible load can be predicted. The validity of this approach is verified through the experiment.
文摘In order to obtain the primary parameters and operating characteristics of a DC motor without directly measuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire both the dynamic and static data of armature current to establish the performance of a DC permanent magnet motor. The accuracy and validity of this virtual test system proposed were verified by comparing the measurements made with the system proposed with the measurements made with conventional torque meters. It is concluded from the results of comparison that from the mathematic model established for the DC permant magnet motors, both major parameters and operating characteristics can be directly established for the DC motors without measuring their torques and rotational speed, a perfect on line measurement and test system has been established for the DC permanent magnet motors using the theory of virtual test system. The system proposed features shorter test time, higher efficiency and lower cost.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsChangwon National University in 2009-2010
文摘The use of design method considering a coil temperature to maximize the thrust density of a double side coreless permanent magnet linear synchronous motor(PMLSM) was presented.The optimal current density where the coil temperature reaches an allowable temperature with heat analysis was applied to a magnetic circuit design.Changing optimal current density is verified whenever the design parameters of the motor are altered.The design parameters of the motor were applied to thrust calculation.In this way,the optimal model,which is a reversal of the existing design method,is deduced.The results were compared with the experimental data to verify their validity.When the convection heat transfer coefficient is applied to other models,the results of the analysis and test values show good concordance.The method proposed has some limitations.
文摘Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport system, we propose parallel synchronous drive of used the PM-LSM (permanent magnet linear synchronous motor). It can pass luggage without having to stop the working. When you establish "parallel synchronous drive", a motor follows the other motor. In our laboratory, one of the motors is called "master motor" and the other motor called "slave motor". The master motor's speed and position pass slave motor then establish parallel synchronous drive. Therefore, slave motor requires high-responsive and precision that follows the master motor. This paper focuses on the control of the slave motor.
文摘In this article, the 2D transient FEM has been used to analyze the dynamic process of the three phase LS-PMSM running characteristic. By verifying it through the experiment, we obtain the conclusion that the simulation result is consistent with the experiment result. At the same time, by analyzing the situation of the magnetic bridge, we also obtain the result that the EMF waves are changing with the situation of the magnetic poles on and we can optimize the motor’s structure at the same time.
基金Supported by the National Natural Science Foundation of China(No.41076054)Special Foundation for State Oceanic Administration of China(No.GHME2011GD02)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1416)
文摘In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.
文摘In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.
文摘A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torque waveforms of the prototype motor when staggering two stators are analyzed. The method that can reduce torque ripple making use of the structure features of this motor is investigated. The results of numerical calculation and experiment indicate that designing motor with this kind of structure is a good scheme for increasing the power density.
文摘The paper presents a mathematical model ofbrushless DC machine induced by permanent magnets. Its construction uses the classical model of permanent magnet synchronous machine and induced model of power inverter using the serraphil form. The results of the computer simulation were presented for such states: startup, work under active constant load and the behavior of the machine in terms of exponential and stepping change of the power inverter's control angle.
文摘DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control based on the SVM (space vector modulation) for IPMSM (interior permanent magnet synchronous motor) drive. Two PI (proportional-integral) controllers regulate the flux and torque, respectively, and the inverter is controlled by the SVM technique in the proposed DTC system. Simulation results show that the performance of the proposed DTC system has been improved with respect to the conventional DTC. The DTC system can effectively reduce the flux and torque ripples.