期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
会当凌绝顶 一览众山小——椭圆中点问题的教学研究
1
作者 张小梅 《数学学习与研究》 2014年第17期62-62,64,共2页
面对"椭圆必考""中点常考"的椭圆教学,如何进行行之有效的教学,是每位高中数学教师都会面临的课题.针对这个问题,作者本着"欲穷千里目,更上一层楼"的理念,依照逻辑关系,由易到难对椭圆中点问题常涉及的... 面对"椭圆必考""中点常考"的椭圆教学,如何进行行之有效的教学,是每位高中数学教师都会面临的课题.针对这个问题,作者本着"欲穷千里目,更上一层楼"的理念,依照逻辑关系,由易到难对椭圆中点问题常涉及的试题及相应的教学进行了全方位的研究.独特的视野,让人耳目一新;务实的研究,让人收获颇丰. 展开更多
关键词 求中点 代点法 中点轨迹 平行弦 定点弦
下载PDF
Solving Linear Fredholm-Stieltjes Integral Equations of the Second Kind by Using the Generalized Midpoint Rule
2
作者 Avyt Asanov M.Musa Abdujabbarov 《Journal of Mathematics and System Science》 2015年第11期459-463,共5页
In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending ... In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending on the number of subintervals "n" are calculated by using Maple 18 and presented. These results are demonstrated graphically in a particular numerical example. An algorithm of this application is given by using Maple 18. 展开更多
关键词 Approximate solutions linear fredholm-stieltjes integral equations midpoint rule.
下载PDF
Solution of Center-Focus Problem for a Class of Cubic Systems
3
作者 Bo SANG Chuanze NIU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第1期149-160,共12页
For a class of cubic systems, the authors give a representation of the n th order Liapunov constant through a chain of pseudo-divisions. As an application, the center problem and the isochronous center problem of a pa... For a class of cubic systems, the authors give a representation of the n th order Liapunov constant through a chain of pseudo-divisions. As an application, the center problem and the isochronous center problem of a particular system are considered. They show that the system has a center at the origin if and only if the first seven Liapunov constants vanish, and cannot have an isochronous center at the origin. 展开更多
关键词 Center variety Isochronous center Center conditions Integrating factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部