The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified w...A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.展开更多
We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements...We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.展开更多
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.11032006,11072094,and 11121202)the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20100211110022)+2 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant No.2013GB110002)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-1)the Scholarship Award for Excellent Doctoral Student granted by the Lanzhou University
文摘A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010MS080)the Research Fund for Doctoral Program of Higher Education of China (Grant No. 20070487403)
文摘We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.