期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
有关极限问题的探讨
1
作者 李江云 王缨 《昆明冶金高等专科学校学报》 CAS 2001年第2期57-61,共5页
极限概念与求极限的运算贯穿了高等数学的始终,是研究函数的主要工具之一。全面掌握求极限的方法是搞好高等数学教学的基本要求。围绕证明极限的存在性和求极限值这两个极限的核心问题,探讨了求极限的常用方法。
关键词 极限 存在性 求极限值 高等数学
下载PDF
有关极限值计算的生物题例析
2
作者 洪胜 《第二课堂(A)》 2005年第6期30-31,共2页
生物这门学科常被人们称为理科中的文科,需要记忆的内容多,习题中文字表述也较其他理科科目多些,这就要求同学们在平时练习时要注重培养从题中筛选出有用信息的能力。特别是在解答关于求极限值的题目(即提问中含"……
关键词 生物题 求极限值 例析 文字表述 有用信息 注重培养 理科 筛选出 文科 提问
原文传递
Volterra Integral Equations and Some Nonlinear Integral Equations with Variable Limit of Integration as Generalized Moment Problems 被引量:1
3
作者 Maria B. Pintarelli 《Journal of Mathematics and System Science》 2015年第1期32-38,共7页
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equa... In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kind f(t) = {a^t K(t, s)x(s)ds a ≤ t ≤ b or solve the Volterra integral equation of the second kind x(t) =f(t)+{a^t K(t,s)x(s)ds a ≤ t ≤ b is equivalent to solving a generalized moment problem of the form un = {a^b gn(s)x(s)ds n = 0,1,2… This shall apply for to find the solution of an integrodifferential equation of the form x'(t) = f(t) + {a^t K(t,s)x(s)ds for a ≤ t ≤ b and x(a) = a0 Also considering the nonlinear integral equation: f(x)= {fa^x y(x-t)y(t)dt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem. 展开更多
关键词 Generalized moment problems solution stability Volterra integral equations nonlinear integral equations.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部