期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
单变量函数方程求根的一种新型大范围收敛迭代法 被引量:2
1
作者 赵双锁 李存林 朱立军 《宁夏大学学报(自然科学版)》 CAS 2002年第4期289-293,共5页
对求解函数方程f(x)=0提出了一种新型大范围收敛迭代法,该方法每次迭代仅需计算一个f值,其收敛阶与有效指数相同,约在1.618与1.839之间。通过给出的实例比较表明,该方法具有明显优势。
关键词 单变量函数方程 求根方法 大范围收敛迭代法 收敛阶 有效指数 划界法
下载PDF
一簇同时求根加速迭代法(英文) 被引量:2
2
作者 刘兰冬 阴小波 《工程数学学报》 CSCD 北大核心 2012年第5期749-756,共8页
多项式方程求根在理论和实践中都是非常重要的问题之一,不但在应用数学而且在许多工程、物理、计算机科学、天文学、经济学等领域中也有着广泛而重要的应用.本文针对同时求解多项式方程所有单根的问题提出一簇带参数的并行高效迭代法,... 多项式方程求根在理论和实践中都是非常重要的问题之一,不但在应用数学而且在许多工程、物理、计算机科学、天文学、经济学等领域中也有着广泛而重要的应用.本文针对同时求解多项式方程所有单根的问题提出一簇带参数的并行高效迭代法,新方法是利用了修正的Chebyshev方法对三阶收敛的Enrlich-Aberth方法进行了加速.理论上我们证明该方法是局部收敛的,且收敛阶可以达到五阶.数值例子和效率分析都表明新方法的高效性与优越性. 展开更多
关键词 多项式零点 同时求根方法 单参数簇 收敛阶
下载PDF
一簇同时求代数方程根的双参数加速方法(英文) 被引量:1
3
作者 刘兰冬 《工程数学学报》 CSCD 北大核心 2013年第6期923-932,共10页
无论在理论上还是在实践中,求解多项式方程的零点都是非常重要的,这个问题不仅在应用数学而且在许多领域,如工程、天文学、经济学等领域中也有着广泛而重要的应用.本文应用修正的Newton方法校正Enrlich-Aberth型方法,提出了一簇具有双... 无论在理论上还是在实践中,求解多项式方程的零点都是非常重要的,这个问题不仅在应用数学而且在许多领域,如工程、天文学、经济学等领域中也有着广泛而重要的应用.本文应用修正的Newton方法校正Enrlich-Aberth型方法,提出了一簇具有双参数的并行迭代法.新方法能同时求出代数方程的所有单根.我们证明了新方法是局部收敛的,且收敛阶可以达到4阶,并呈现出比一些常用方法更好的效率与优势. 展开更多
关键词 多项式零点 同时求根方法 双参数簇 收敛阶
下载PDF
一种同时求多项式所有零点及其重数的混合并行策略(英文)
4
作者 刘兰冬 付云姗 《工程数学学报》 CSCD 北大核心 2014年第6期903-914,共12页
本文提出一种计算多项式所有重零点及其重数的混合并行迭代策略.新算法包括两个部分:粗略计算部分和加速计算部分.在第一部分中,我们利用一种局部2阶收敛的方法求出所有低精度重根和重数;在第二部分中我们提出一种新的Gargantini型迭代... 本文提出一种计算多项式所有重零点及其重数的混合并行迭代策略.新算法包括两个部分:粗略计算部分和加速计算部分.在第一部分中,我们利用一种局部2阶收敛的方法求出所有低精度重根和重数;在第二部分中我们提出一种新的Gargantini型迭代法并证明新方法是局部4阶收敛.利用这种新方法对已求出的低精度重根进行加速.最后用数值算例验证新策略的有效性和优越性. 展开更多
关键词 多项式零点 同时求根方法 重零点 重根数 收敛阶
下载PDF
一元二次方程的整数根问题
5
作者 唐雪梅 姜继学 《黔东南民族师范高等专科学校学报》 2002年第3期70-71,共2页
介绍解决一元二次方程的整数根问题常用的方法 .
关键词 一元二次方程 整数根 判别式 系数 求根方法
下载PDF
Computationally Efficient 2DDOA Estimation for Uniform Planar Arrays:RDROOTMUSIC Algorithm 被引量:3
6
作者 YE Changbo ZHU Beizuo +1 位作者 LI Baobao ZHANG Xiaofei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期685-694,共10页
The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla... The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm. 展开更多
关键词 uniform planar array(UPA) direction of arrival(DOA)estimation RD-ROOT-MUSIC algorithm
下载PDF
Polynomial Root Finding on Frequency Estimation with Sub-Nyquist Temporal Sampling
7
作者 石海杰 桂志国 张权 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期349-352,共4页
This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies... This paper addresses an algebraic approach for wideband frequency estimation with sub-Nyquist temporal sampling. Firstly, an algorithm based on double polynomial root finding procedure to estimate aliasing frequencies and joint aliasing frequencies-time delay phases in multi-signal situation is presentcd. Since the sum of time delay phases determined from the least squares estimation shows the characteristics of the corre- sponding parameters pairs, then the pairmatching method is conducted by combining it with estimated parameters mentioned above. Although the proposed method is computationally simpler than the conventional schemes, simulation results show that it can approach optimum estimation performance. 展开更多
关键词 wideband frequency estimation sub-nyquist sampling polynomial root finding pair matching
下载PDF
Solving the Sod Shock Tube Problem Using Localized Differential Quadrature (LDQ) Method
8
作者 宗智 李章锐 董婧 《Journal of Marine Science and Application》 2011年第1期41-48,共8页
The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as di... The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as difference method) to numerically evaluate the derivatives of the functions.Its high efficiency and accuracy attract many engineers to apply the method to solve most of the numerical problems in engineering.However,difficulties can still be found in some particular problems.In the following study,the LDQ was applied to solve the Sod shock tube problem.This problem is a very particular kind of problem,which challenges many common numerical methods.Three different examples were given for testing the robustness and accuracy of the LDQ.In the first example,in which common initial conditions and solving methods were given,the numerical oscillations could be found dramatically;in the second example,the initial conditions were adjusted appropriately and the numerical oscillations were less dramatic than that in the first example;in the third example,the momentum equation of the Sod shock tube problem was corrected by adding artificial viscosity,causing the numerical oscillations to nearly disappear in the process of calculation.The numerical results presented demonstrate the detailed difficulties encountered in the calculations,which need to be improved in future work.However,in summary,the localized differential quadrature is shown to be a trustworthy method for solving most of the nonlinear problems in engineering. 展开更多
关键词 localized differential quadrature Sod shock tube numerical oscillations artificial viscosity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部