In this study we investigate strain effect in barriers of 1.3 μm AlCalnAs-InP uncooled multiple quantum well lasers. Single effective mass and Kohn-Luttinger Harniltonian equations have been solved to obtain quantum ...In this study we investigate strain effect in barriers of 1.3 μm AlCalnAs-InP uncooled multiple quantum well lasers. Single effective mass and Kohn-Luttinger Harniltonian equations have been solved to obtain quantum states and envelope wave functions in the structure. In the case of unstrained barriers, our simulations results have good agreement with a real device fabricated and presented in one of the references. Our main work is proposal of 0.2% compressive strain in the structure Barriers that causes significant reduction in Leakage current density and Auger current density characteristics in 85 ℃. 20% improvement in mode gain-current density characteristic is also obtained in 85 ℃.展开更多
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then trans...Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.展开更多
文摘In this study we investigate strain effect in barriers of 1.3 μm AlCalnAs-InP uncooled multiple quantum well lasers. Single effective mass and Kohn-Luttinger Harniltonian equations have been solved to obtain quantum states and envelope wave functions in the structure. In the case of unstrained barriers, our simulations results have good agreement with a real device fabricated and presented in one of the references. Our main work is proposal of 0.2% compressive strain in the structure Barriers that causes significant reduction in Leakage current density and Auger current density characteristics in 85 ℃. 20% improvement in mode gain-current density characteristic is also obtained in 85 ℃.
文摘Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.