Two basic Darboux transformations of a spectral problem associated with a classical Boussinesq-Burgersequation are presented in this letter.They are used to generate new solutions of the classical Boussinesq-Burgerseq...Two basic Darboux transformations of a spectral problem associated with a classical Boussinesq-Burgersequation are presented in this letter.They are used to generate new solutions of the classical Boussinesq-Burgersequation.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
By using Gumming (JC) model. energy-level gap of this the pseudo invariant eigen-operator method we The pseudo-invariant eigen-operator is found in JC Hamiltonian is derived. This approach seems analyze the field-in...By using Gumming (JC) model. energy-level gap of this the pseudo invariant eigen-operator method we The pseudo-invariant eigen-operator is found in JC Hamiltonian is derived. This approach seems analyze the field-intensity-dependent Jaynes terms of the supersymmetric generators. The concise.展开更多
Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equa...Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equationwith non-vanishing boundary conditions if we prove that these conditions can be demonstrated by the GLM equation,which determines the kernel function N(x,y,t)in according to the inverse scattering method.展开更多
In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicit...In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicitly restarted Arnoldi method and Jacobi-Davidson method,are modified with some complementary techniques to make them suitable for modal analysis.Detailed descriptions of the three algorithms are given.Based on these algorithms,a parallel solution procedure is established via the PANDA framework and its associated eigensolvers.Using the solution procedure on a machine equipped with up to 4800processors,the parallel performance of the three predominant methods is evaluated via numerical experiments with typical engineering structures,where the maximum testing scale attains twenty million degrees of freedom.The speedup curves for different cases are obtained and compared.The results show that the three methods are good for modal analysis in the scale of ten million degrees of freedom with a favorable parallel scalability.展开更多
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie...In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.展开更多
The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and ap...The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications in optimal combination and linear programming fields. It can be difficultly solved by the electronic computer in exponential level time. Meanwhile in previous studies deoxyribonucleic acid (DNA) molecular operations usually were used to solve NP-complete continuous path search problems, e.g. HPP, traveling salesman problem, rarely for NP-hard problems with discrete vertices or edges solutions, such as the minimum vertex cover problem, graph coloring problem and so on. In this paper, we present a DNA algorithm for solving the MMP with DNA molecular operations. For an undirected graph with n vertices and m edges, we reasonably design fixed length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MMP in proper length range using O(n^3) time. We extend the application of DNA molecular operations and simultaneously simplify the complexity of the computation.展开更多
文摘Two basic Darboux transformations of a spectral problem associated with a classical Boussinesq-Burgersequation are presented in this letter.They are used to generate new solutions of the classical Boussinesq-Burgersequation.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金Supported by Foundation of President of Chinese Academy of Science
文摘By using Gumming (JC) model. energy-level gap of this the pseudo invariant eigen-operator method we The pseudo-invariant eigen-operator is found in JC Hamiltonian is derived. This approach seems analyze the field-intensity-dependent Jaynes terms of the supersymmetric generators. The concise.
基金the Huazhong University of Science and Technology under Grant No.0101011110National Natural Science Foundation of China under Grant No.10375041
文摘Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equationwith non-vanishing boundary conditions if we prove that these conditions can be demonstrated by the GLM equation,which determines the kernel function N(x,y,t)in according to the inverse scattering method.
基金supported by the National Defence Basic Fundamental Research Program of China(Grant No.C1520110002)the Fundamental Development Foundation of China Academy Engineering Physics(Grant No.2012A0202008)
文摘In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicitly restarted Arnoldi method and Jacobi-Davidson method,are modified with some complementary techniques to make them suitable for modal analysis.Detailed descriptions of the three algorithms are given.Based on these algorithms,a parallel solution procedure is established via the PANDA framework and its associated eigensolvers.Using the solution procedure on a machine equipped with up to 4800processors,the parallel performance of the three predominant methods is evaluated via numerical experiments with typical engineering structures,where the maximum testing scale attains twenty million degrees of freedom.The speedup curves for different cases are obtained and compared.The results show that the three methods are good for modal analysis in the scale of ten million degrees of freedom with a favorable parallel scalability.
基金supported by National Natural Science Foundation of China(Grant No.10901093)National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
文摘In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.
文摘The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications in optimal combination and linear programming fields. It can be difficultly solved by the electronic computer in exponential level time. Meanwhile in previous studies deoxyribonucleic acid (DNA) molecular operations usually were used to solve NP-complete continuous path search problems, e.g. HPP, traveling salesman problem, rarely for NP-hard problems with discrete vertices or edges solutions, such as the minimum vertex cover problem, graph coloring problem and so on. In this paper, we present a DNA algorithm for solving the MMP with DNA molecular operations. For an undirected graph with n vertices and m edges, we reasonably design fixed length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MMP in proper length range using O(n^3) time. We extend the application of DNA molecular operations and simultaneously simplify the complexity of the computation.